Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - Partial: Separation of Variables - iii



Example 4 Use Separation of Variables on the following partial differential equation.2ut2=c22ux2u(x,0)=f(x)ut(x,0)=g(x)u(0,t)=0u(L,t)=0


Now, as with the heat equation the two initial conditions are here only because they need to be here for the problem. We will not actually be doing anything with them here and as mentioned previously the product solution will rarely satisfy them. We will be dealing with those in a later section when we actually go past this first step. Again, the point of this example is only to get down to the two ordinary differential equations that separation of variables gives.
So, let’s get going on that and plug the product solution, u(x,t)=φ(x)h(t) (we switched the G to an h here to avoid confusion with the g in the second initial condition) into the wave equation to get,
2t2(φ(x)h(t))=c22x2(φ(x)h(t))φ(x)d2hdt2=c2h(t)d2φdx21c2hd2hdt2=1φd2φdx2Note that we moved the c2 to the right side for the same reason we moved the k in the heat equation. It will make solving the boundary value problem a little easier.
Now that we’ve gotten the equation separated into a function of only t on the left and a function of only x on the right we can introduce a separation constant and again we’ll use λ so we can arrive at a boundary value problem that we are familiar with. So, after introducing the separation constant we get,
1c2hd2hdt2=1φd2φdx2=λ
The two ordinary differential equations we get are then,

d2hdt2=λc2hd2φdx2=λφThe boundary conditions in this example are identical to those from the first example and so plugging the product solution into the boundary conditions gives,
φ(0)=0φ(L)=0Applying separation of variables to this problem gives,
d2hdt2=λc2hd2φdx2=λφφ(0)=0φ(L)=0
Next, let’s take a look at the 2-D Laplace’s Equation.


Example 5 Use Separation of Variables on the following partial differential equation.2ux2+2uy2=00xL0yHu(0,y)=g(y)u(L,y)=0u(x,0)=0u(x,H)=0


This problem is a little (well actually quite a bit in some ways) different from the heat and wave equations. First, we no longer really have a time variable in the equation but instead we usually consider both variables to be spatial variables and we’ll be assuming that the two variables are in the ranges shown above in the problems statement. Note that this also means that we no longer have initial conditions, but instead we now have two sets of boundary conditions, one for xand one for y.
Also, we should point out that we have three of the boundary conditions homogeneous and one nonhomogeneous for a reason. When we get around to actually solving this Laplace’s Equation we’ll see that this is in fact required in order for us to find a solution.
For this problem we’ll use the product solution,
u(x,y)=h(x)φ(y)It will often be convenient to have the boundary conditions in hand that this product solution gives before we take care of the differential equation. In this case we have three homogeneous boundary conditions and so we’ll need to convert all of them. Because we’ve already converted these kind of boundary conditions we’ll leave it to you to verify that these will become,
h(L)=0φ(0)=0φ(H)=0Plugging this into the differential equation and separating gives,
2x2(h(x)φ(y))+2y2(h(x)φ(y))=0φ(y)d2hdx2+h(x)d2φdy2=01hd2hdx2=1φd2φdy2Okay, now we need to decide upon a separation constant. Note that every time we’ve chosen the separation constant we did so to make sure that the differential equation
d2φdy2+λφ=0would show up. Of course, the letters might need to be different depending on how we defined our product solution (as they’ll need to be here). We know how to solve this eigenvalue/eigenfunction problem as we pointed out in the discussion after the first example. However, in order to solve it we need two boundary conditions.
So, for our problem here we can see that we’ve got two boundary conditions for φ(y) but only one for h(x) and so we can see that the boundary value problem that we’ll have to solve will involve φ(y) and so we need to pick a separation constant that will give use the boundary value problem we’ve already solved. In this case that means that we need to choose λ for the separation constant. If you’re not sure you believe that yet hold on for a second and you’ll soon see that it was in fact the correct choice here.
Putting the separation constant gives,
1hd2hdx2=1φd2φdy2=λThe two ordinary differential equations we get from Laplace’s Equation are then,
d2hdx2=λhd2φdy2=λφand notice that if we rewrite these a little we get,
d2hdx2λh=0d2φdy2+λφ=0We can now see that the second one does now look like one we’ve already solved (with a small change in letters of course, but that really doesn’t change things).
So, let’s summarize up here.
d2hdx2λh=0d2φdy2+λφ=0h(L)=0φ(0)=0φ(H)=0

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse s...

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see th...

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the d...

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi...

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) ...

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e...

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → ...

Differential Equations - Second Order: Repeated Roots

In this section we will be looking at the last case for the constant coefficient, linear, homogeneous second order differential equations. In this case we want solutions to a y ′′ + b y ′ + c y = 0 a y ″ + b y ′ + c y = 0 where solutions to the characteristic equation a r 2 + b r + c = 0 a r 2 + b r + c = 0 are double roots  r 1 = r 2 = r r 1 = r 2 = r . This leads to a problem however. Recall that the solutions are y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t These are the same solution and will NOT be “nice enough” to form a general solution. We do promise that we’ll define “nice enough” eventually! So, we can use the first solution, but we’re going to need a second solution. Before finding this second solution let’s take a little side trip. The reason for the side trip will be clear eventually. From the quadratic formula we know that the roots to the characteristic equation are, r 1 , 2 = ...

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ (...