Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Systems: Repeated Eigenvalues - i



This is the final case that we need to take a look at. In this section we are going to look at solutions to the system,
x=Ax
where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which A is a 2×2 matrix we will make that assumption from the start. So, the system will have a double eigenvalue, λ.
This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one,
x1=ηeλt
So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a t to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if
x=teλtη
will also be a solution.
To check all we need to do is plug into the system. Don’t forget to product rule the proposed solution when you differentiate!
ηeλt+ληteλt=Aηteλt
Now, we got two functions here on the left side, an exponential by itself and an exponential times a t. So, in order for our guess to be a solution we will need to require,
Aη=λη(AλI)η=0η=0
The first requirement isn’t a problem since this just says that λ is an eigenvalue and it’s eigenvector is η. We already knew this however so there’s nothing new there. The second however is a problem. Since ηis an eigenvector we know that it can’t be zero, yet in order to satisfy the second condition it would have to be.
So, our guess was incorrect. The problem seems to be that there is a lone term with just an exponential in it so let’s see if we can’t fix up our guess to correct that. Let’s try the following guess.
x=teλtη+eλtρ
where ρ is an unknown vector that we’ll need to determine.
As with the first guess let’s plug this into the system and see what we get.
ηeλt+ληteλt+λρeλt=A(ηteλt+ρeλt)(η+λρ)eλt+ληteλt=Aηteλt+Aρeλt
Now set coefficients equal again,
λη=Aη(AλI)η=0η+λρ=Aρ(AλI)ρ=η
As with our first guess the first equation tells us nothing that we didn’t already know. This time the second equation is not a problem. All the second equation tells us is that ρ must be a solution to this equation.
It looks like our second guess worked. Therefore,
x2=teλtη+eλtρ
will be a solution to the system provided ρ is a solution to
(AλI)ρ=η
Also, this solution and the first solution are linearly independent and so they form a fundamental set of solutions and so the general solution in the double eigenvalue case is,
x=c1eλtη+c2(teλtη+eλtρ)
Let’s work an example.


Example 1 Solve the following IVP.x=(7143)xx(0)=(25)


First find the eigenvalues for the system.
det(AλI)=|7λ143λ|=λ210λ+25=(λ5)2λ1,2=5So, we got a double eigenvalue. Of course, that shouldn’t be too surprising given the section that we’re in. Let’s find the eigenvector for this eigenvalue.
(2142)(η1η2)=(00)2η1+η2=0η2=2η1The eigenvector is then,
η=(η12η1)η10η(1)=(12)η1=1The next step is find ρ. To do this we’ll need to solve,
(2142)(ρ1ρ2)=(12)2ρ1+ρ2=1ρ2=12ρ1Note that this is almost identical to the system that we solve to find the eigenvalue. The only difference is the right hand side. The most general possible ρ is
ρ=(ρ112ρ1)ρ=(01)if ρ1=0In this case, unlike the eigenvector system we can choose the constant to be anything we want, so we might as well pick it to make our life easier. This usually means picking it to be zero.
We can now write down the general solution to the system.
x(t)=c1e5t(12)+c2(e5tt(12)+e5t(01))Applying the initial condition to find the constants gives us,
(25)=x(0)=c1(12)+c2(01)c1=22c1+c2=5}c1=2,c2=1The actual solution is then,
x(t)=2e5t(12)(te5t(12)+e5t(01))=e5t(24)e5tt(12)e5t(01)=e5t(25)e5tt(12)Note that we did a little combining here to simplify the solution up a little.

So, the next example will be to sketch the phase portrait for this system.


Example 2 Sketch the phase portrait for the system.x=(7143)x


These will start in the same way that real, distinct eigenvalue phase portraits start. We’ll first sketch in a trajectory that is parallel to the eigenvector and note that since the eigenvalue is positive the trajectory will be moving away from the origin.
Now, it will be easier to explain the remainder of the phase portrait if we actually have one in front of us. So here is the full phase portrait with some more trajectories sketched in.
Trajectories in these cases always emerge from (or move into) the origin in a direction that is parallel to the eigenvector. Likewise, they will start in one direction before turning around and moving off into the other direction. The directions in which they move are opposite depending on which side of the trajectory corresponding to the eigenvector we are on. Also, as the trajectories move away from the origin it should start becoming parallel to the trajectory corresponding to the eigenvector.
So, how do we determine the direction? We can do the same thing that we did in the complex case. We’ll plug in (1,0)into the system and see which direction the trajectories are moving at that point. Since this point is directly to the right of the origin the trajectory at that point must have already turned around and so this will give the direction that it will traveling after turning around.
Doing that for this problem to check our phase portrait gives,
(7143)(10)=(74)This vector will point down into the fourth quadrant and so the trajectory must be moving into the fourth quadrant as well. This does match up with our phase portrait.
In these cases, the equilibrium is called a node and is unstable in this case. Note that sometimes you will hear nodes for the repeated eigenvalue case called degenerate nodes or improper nodes.

Let’s work one more example.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → = ( − 6 − 3 ρ

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ ( a t ) −