Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Systems: Matrices & Vectors - i

This section is intended to be a catch all for many of the basic concepts that are used occasionally in working with systems of differential equations. There will not be a lot of details in this section, nor will we be working large numbers of examples. Also, in many cases we will not be looking at the general case since we won’t need the general cases in our differential equations work.

Let’s start with some of the basic notation for matrices. An n×m (this is often called the size or dimension of the matrix) matrix is a matrix with n rows and m columns and the entry in the ith row and jth column is denoted by aij. A short hand method of writing a general n×mmatrix is the following.

A=(a11a12a1ma21a22a2man1an2anm)n×m=(aij)n×m
The size or dimension of a matrix is subscripted as shown if required. If it’s not required or clear from the problem the subscripted size is often dropped from the matrix.


Special Matrices


There are a few “special” matrices out there that we may use on occasion. The first special matrix is the square matrix. A square matrix is any matrix whose size (or dimension) is n×n. In other words, it has the same number of rows as columns. In a square matrix the diagonal that starts in the upper left and ends in the lower right is often called the main diagonal.
The next two special matrices that we want to look at are the zero matrix and the identity matrix. The zero matrix, denoted 0n×m, is a matrix all of whose entries are zeroes. The identity matrix is a square n×n matrix, denoted In, whose main diagonals are all 1’s and all the other elements are zero. Here are the general zero and identity matrices.
0n×m=(000000)n×mIn=(100010001)n×n
In matrix arithmetic these two matrices will act in matrix work like zero and one act in the real number system.
The last two special matrices that we’ll look at here are the column matrix and the row matrix. These are matrices that consist of a single column or a single row. In general, they are,
x=(x1x2xn)n×1y=(y1y2ym)1×m
We will often refer to these as vectors.

Arithmetic


We next need to take a look at arithmetic involving matrices. We’ll start with addition and subtraction of two matrices. So, suppose that we have two n×m matrices, A and B. The sum (or difference) of these two matrices is then,
An×m±Bn×m=(aij)n×m±(bij)n×m=(aij±bij)n×m
The sum or difference of two matrices of the same size is a new matrix of identical size whose entries are the sum or difference of the corresponding entries from the original two matrices. Note that we can’t add or subtract entries with different sizes.
Next, let’s look at scalar multiplication. In scalar multiplication we are going to multiply a matrix A by a constant (sometimes called a scalar) α. In this case we get a new matrix whose entries have all been multiplied by the constant, α.
αAn×m=α(aij)n×m=(αaij)n×m



Example 1 Given the following two matrices,A=(3291)B=(4105)compute A5B.

There isn’t much to do here other than the work.
A5B=(3291)5(4105)=(3291)(205025)=(237926)We first multiplied all the entries of B by 5 then subtracted corresponding entries to get the entries in the new matrix.

The final matrix operation that we’ll take a look at is matrix multiplication. Here we will start with two matrices, An×p and Bp×m. Note that Amust have the same number of columns as B has rows. If this isn’t true, then we can’t perform the multiplication. If it is true, then we can perform the following multiplication.
An×pBp×m=(cij)n×m
The new matrix will have size n×m and the entry in the ith row and jth column, cij, is found by multiplying row i of matrix A by column j of matrix B. This doesn’t always make sense in words so let’s look at an example.


Example 2 GivenA=(210361)2×3B=(101243100302)3×4compute AB.

The new matrix will have size 2×4. The entry in row 1 and column 1 of the new matrix will be found by multiplying row 1 of A by column 1 of B. This means that we multiply corresponding entries from the row of A and the column of B and then add the results up. Here are a couple of the entries computed all the way out.
c11=(2)(1)+(1)(4)+(0)(0)=6c13=(2)(1)+(1)(1)+(0)(0)=3c24=(3)(2)+(6)(0)+(1)(2)=8Here’s the complete solution.
C=(6334272198)

In this last example notice that we could not have done the product BA since the number of columns of B does not match the number of row of A. It is important to note that just because we can compute AB doesn’t mean that we can compute BA. Likewise, even if we can compute both AB and BA they may or may not be the same matrix.

Determinant


The next topic that we need to take a look at is the determinant of a matrix. The determinant is actually a function that takes a square matrix and converts it into a number. The actual formula for the function is somewhat complex and definitely beyond the scope of this review.
The main method for computing determinants of any square matrix is called the method of cofactors. Since we are going to be dealing almost exclusively with 2×2 matrices and the occasional 3×3 matrix we won’t go into the method here. We can give simple formulas for each of these cases. The standard notation for the determinant of the matrix A is.
det(A)=|A|
Here are the formulas for the determinant of 2×2 and 3×3 matrices.
|acbd|=adcb|a11a12a13a21a22a23a31a32a33|=a11|a22a23a32a33|a12|a21a23a31a33|+a13|a21a22a31a32|



Example 3 Find the determinant of each of the following matrices.

A=(91824)B=(231167451)

For the 2×2 there isn’t much to do other than to plug it into the formula.
det(A)=|91824|=(9)(4)(18)(2)=0For the 3×3 we could plug it into the formula, however unlike the 2×2 case this is not an easy formula to remember. There is an easier way to get the same result. A quicker way of getting the same result is to do the following. First write down the matrix and tack a copy of the first two columns onto the end as follows.
det(B)=|231167451|231645Now, notice that there are three diagonals that run from left to right and three diagonals that run from right to left. What we do is multiply the entries on each diagonal up and the if the diagonal runs from left to right we add them up and if the diagonal runs from right to left we subtract them.
Here is the work for this matrix.
det(B)=|231167451|231645=(2)(6)(1)+(3)(7)(4)+(1)(1)(5)(3)(1)(1)(2)(7)(5)(1)(6)(4)=42

You can either use the formula or the short cut to get the determinant of a 3×3.
If the determinant of a matrix is zero we call that matrix singular and if the determinant of a matrix isn’t zero we call the matrix nonsingular. The 2×2 matrix in the above example was singular while the 3×3 matrix is nonsingular.


Matrix Inverse


Next, we need to take a look at the inverse of a matrix. Given a square matrix, A, of size n if we can find another matrix of the same size, B such that,
AB=BA=In
then we call B the inverse of A and denote it by B=A1.
Computing the inverse of a matrix, A, is fairly simple. First, we form a new matrix,
(AIn)
and then use the row operations from the previous section and try to convert this matrix into the form,
(InB)
If we can then B is the inverse of A. If we can’t then there is no inverse of the matrix A.in which the inverse doesn’t exist.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Partial: Summary of Separation of Variables

Throughout this chapter we’ve been talking about and solving partial differential equations using the method of separation of variables. However, the one thing that we’ve not really done is completely work an example from start to finish showing each and every step. Each partial differential equation that we solved made use somewhere of the fact that we’d done at least part of the problem in another section and so it makes some sense to have a quick summary of the method here. Also note that each of the partial differential equations only involved two variables. The method can often be extended out to more than two variables, but the work in those problems can be quite involved and so we didn’t cover any of that here. So with all of that out of the way here is a quick summary of the method of separation of variables for partial differential equations in two variables. Verify that the partial differential equation is linear and homogeneous. Verify that the boundary condi

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e λ t → η x → = t e λ t η → will also be a

Differential Equations - First Order: Modeling - ii

Example 4  A 50 kg object is shot from a cannon straight up with an initial velocity of 10m/s off a bridge that is 100 meters above the ground. If air resistance is given by 5 v v  determine the velocity of the mass when it hits the ground. First, notice that when we say straight up, we really mean straight up, but in such a way that it will miss the bridge on the way back down. Here is a sketch of the situation. Notice the conventions that we set up for this problem. Since the vast majority of the motion will be in the downward direction we decided to assume that everything acting in the downward direction should be positive. Note that we also defined the “zero position” as the bridge, which makes the ground have a “position” of 100. Okay, if you think about it we actually have two situations here. The initial phase in which the mass is rising in the air and the second phase when the mass is on its way down. We will need to examine both situations and set up an IVP for