Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Systems: Equations




Because we are going to be working almost exclusively with systems of equations in which the number of unknowns equals the number of equations we will restrict our review to these kinds of systems.
All of what we will be doing here can be easily extended to systems with more unknowns than equations or more equations than unknowns if need be.
Let’s start with the following system of n equations with the n unknowns, x1x2,…, xn.
(1)a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn
Note that in the subscripts on the coefficients in this system, aij, the i corresponds to the equation that the coefficient is in and the j corresponds to the unknown that is multiplied by the coefficient.
To use linear algebra to solve this system we will first write down the augmented matrix for this system. An augmented matrix is really just all the coefficients of the system and the numbers for the right side of the system written in matrix form. Here is the augmented matrix for this system.
(a11a12a1nb1a21a22a2nb2an1an2annbn)
To solve this system we will use elementary row operations (which we’ll define these in a bit) to rewrite the augmented matrix in triangular form. The matrix will be in triangular form if all the entries below the main diagonal (the diagonal containing a11a22, …,ann) are zeroes.
Once this is done we can recall that each row in the augmented matrix corresponds to an equation. We will then convert our new augmented matrix back to equations and at this point solving the system will become very easy.
Before working an example let’s first define the elementary row operations. There are three of them.
  1. Interchange two rows. This is exactly what it says. We will interchange row i with row j. The notation that we’ll use to denote this operation is : RiRj
  2. Multiply row i by a constant, c. This means that every entry in row i will get multiplied by the constant c. The notation for this operation is : cRi
  3. Add a multiple of row i to row j. In our heads we will multiply row i by an appropriate constant and then add the results to row j and put the new row back into row j leaving row i in the matrix unchanged. The notation for this operation is : cRi+Rj
It’s always a little easier to understand these operations if we see them in action. So, let’s solve a couple of systems.


Example 1 Solve the following system of equations.
2x1+x2x3=4x1+2x2+3x3=133x1+x3=1

The first step is to write down the augmented matrix for this system. Don’t forget that coefficients of terms that aren’t present are zero.
(2114123133011)Now, we want the entries below the main diagonal to be zero. The main diagonal has been colored red so we can keep track of it during this first example. For reasons that will be apparent eventually we would prefer to get the main diagonal entries to all be ones as well.
We can get a one in the upper most spot by noticing that if we interchange the first and second row we will get a one in the uppermost spot for free. So let’s do that.
(2114123133011)R1R2(1231321143011)Now we need to get the last two entries (the -2 and 3) in the first column to be zero. We can do this using the third row operation. Note that if we take 2 times the first row and add it to the second row we will get a zero in the second entry in the first column and if we take -3 times the first row to the third row we will get the 3 to be a zero. We can do both of these operations at the same time so let’s do that.
(1231321143011)2R1+R23R1+R3(123130553006840)Before proceeding with the next step, let’s make sure that you followed what we just did. Let’s take a look at the first operation that we performed. This operation says to multiply an entry in row 1 by 2 and add this to the corresponding entry in row 2 then replace the old entry in row 2 with this new entry. The following are the four individual operations that we performed to do this.
2(1)+(2)=02(2)+1=52(3)+(1)=52(13)+4=30Okay, the next step optional, but again is convenient to do. Technically, the 5 in the second column is okay to leave. However, it will make our life easier down the road if it is a 1. We can use the second row operation to take care of this. We can divide the whole row by 5. Doing this gives,
(123130553006840)15R2(12313011606840)The next step is to then use the third row operation to make the -6 in the second column into a zero.
(12313011606840)6R2+R3(1231301160024)Now, officially we are done, but again it’s somewhat convenient to get all ones on the main diagonal so we’ll do one last step.
(1231301160024)12R3(1231301160012)We can now convert back to equations.
(1231301160012)x1+2x2+3x3=13x2+x3=6x3=2At this point the solving is quite easy. We get x3 for free and once we get that we can plug this into the second equation and get x2. We can then use the first equation to get x1. Note as well that having 1’s along the main diagonal helped somewhat with this process.
The solution to this system of equation is
x1=1x2=4x3=2

The process used in this example is called Gaussian Elimination. Let’s take a look at another example.


Example 2 Solve the following system of equations.x12x2+3x3=2x1+x22x3=32x1x2+3x3=1

First write down the augmented matrix.
(123211232131)We won’t put down as many words in working this example. Here’s the work for this augmented matrix.
(123211232131)R1+R22R1+R3(123201110335)R2(123201110335)3R2+R3(123201110008)We won’t go any farther in this example. Let’s go back to equations to see why.
(123201110008)x12x2+3x3=2x2x3=10=8The last equation should cause some concern. There’s one of three options here. First, we’ve somehow managed to prove that 0 equals 8 and we know that’s not possible. Second, we’ve made a mistake, but after going back over our work it doesn’t appear that we have made a mistake.
This leaves the third option. When we get something like the third equation that simply doesn’t make sense we immediately know that there is no solution. In other words, there is no set of three numbers that will make all three of the equations true at the same time.

Let’s work another example. We are going to get the system for this new example by making a very small change to the system from the previous example.


Example 3 Solve the following system of equations.x12x2+3x3=2x1+x22x3=32x1x2+3x3=7

So, the only difference between this system and the system from the second example is we changed the 1 on the right side of the equal sign in the third equation to a -7.
Now write down the augmented matrix for this system.
(123211232137)The steps for this problem are identical to the steps for the second problem so we won’t write them all down. Upon performing the same steps we arrive at the following matrix.
(123201110000)This time the last equation reduces to
0=0and unlike the second example this is not a problem. Zero does in fact equal zero!
We could stop here and go back to equations to get a solution and there is a solution in this case. However, if we go one more step and get a zero above the one in the second column as well as below it our life will be a little simpler. Doing this gives,
(123201110000)2R2+R1(101401110000)If we now go back to equation we get the following two equations.
(101401110000)x1+x3=4x2x3=1We have two equations and three unknowns. This means that we can solve for two of the variables in terms of the remaining variable. Since x3 is in both equations we will solve in terms of that.
x1=x34x2=x31What this solution means is that we can pick the value of x3 to be anything that we’d like and then find values of x1 and x2. In these cases, we typically write the solution as follows,
x1=t4x2=t1t= any real numberx3=tIn this way we get an infinite number of solutions, one for each and every value of t.
These three examples lead us to a nice fact about systems of equations.

Fact


Given a system of equations, (1), we will have one of the three possibilities for the number of solutions.
  1. No solution.
  2. Exactly one solution.
  3. Infinitely many solutions.

Before moving on to the next section we need to take a look at one more situation. The system of equations in (1) is called a nonhomogeneous system if at least one of the bis is not zero. If however all of the bi's are zero we call the system homogeneous and the system will be,
(2)a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0an1x1+an2x2++annxn=0
Now, notice that in the homogeneous case we are guaranteed to have the following solution.
x1=x2==xn=0
This solution is often called the trivial solution.
For homogeneous systems the fact above can be modified to the following.

Fact


Given a homogeneous system of equations, (2), we will have one of the two possibilities for the number of solutions.
  1. Exactly one solution, the trivial solution
  2. Infinitely many non-zero solutions in addition to the trivial solution.
In the second possibility we can say non-zero solution because if there are going to be infinitely many solutions and we know that one of them is the trivial solution then all the rest must have at least one of the xi's be non-zero and hence we get a non-zero solution.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Partial: Summary of Separation of Variables

Throughout this chapter we’ve been talking about and solving partial differential equations using the method of separation of variables. However, the one thing that we’ve not really done is completely work an example from start to finish showing each and every step. Each partial differential equation that we solved made use somewhere of the fact that we’d done at least part of the problem in another section and so it makes some sense to have a quick summary of the method here. Also note that each of the partial differential equations only involved two variables. The method can often be extended out to more than two variables, but the work in those problems can be quite involved and so we didn’t cover any of that here. So with all of that out of the way here is a quick summary of the method of separation of variables for partial differential equations in two variables. Verify that the partial differential equation is linear and homogeneous. Verify that the boundary condi

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e λ t → η x → = t e λ t η → will also be a

Differential Equations - First Order: Modeling - ii

Example 4  A 50 kg object is shot from a cannon straight up with an initial velocity of 10m/s off a bridge that is 100 meters above the ground. If air resistance is given by 5 v v  determine the velocity of the mass when it hits the ground. First, notice that when we say straight up, we really mean straight up, but in such a way that it will miss the bridge on the way back down. Here is a sketch of the situation. Notice the conventions that we set up for this problem. Since the vast majority of the motion will be in the downward direction we decided to assume that everything acting in the downward direction should be positive. Note that we also defined the “zero position” as the bridge, which makes the ground have a “position” of 100. Okay, if you think about it we actually have two situations here. The initial phase in which the mass is rising in the air and the second phase when the mass is on its way down. We will need to examine both situations and set up an IVP for