Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - Systems: Complex Eigenvalues



In this section we will look at solutions to
x=Ax
where the eigenvalues of the matrix A are complex. With complex eigenvalues we are going to have the same problem that we had back when we were looking at second order differential equations. We want our solutions to only have real numbers in them, however since our solutions to systems are of the form,
x=ηeλt
we are going to have complex numbers come into our solution from both the eigenvalue and the eigenvector. Getting rid of the complex numbers here will be similar to how we did it back in the second order differential equation case but will involve a little more work this time around. It’s easiest to see how to do this in an example.


Example 1 Solve the following IVP.x=(3943)xx(0)=(24)


We first need the eigenvalues and eigenvectors for the matrix.
det(AλI)=|3λ943λ|=λ2+27λ1,2=±33iSo, now that we have the eigenvalues recall that we only need to get the eigenvector for one of the eigenvalues since we can get the second eigenvector for free from the first eigenvector.
λ1=33i:
We need to solve the following system.
(333i94333i)(η1η2)=(00)Using the first equation we get,
(333i)η1+9η2=0η2=13(13i)η1So, the first eigenvector is,
η=(η113(13i)η1)η(1)=(31+3i)η1=3When finding the eigenvectors in these cases make sure that the complex number appears in the numerator of any fractions since we’ll need it in the numerator later on. Also try to clear out any fractions by appropriately picking the constant. This will make our life easier down the road.
Now, the second eigenvector is,
η(2)=(313i)However, as we will see we won’t need this eigenvector.
The solution that we get from the first eigenvalue and eigenvector is,
x1(t)=e33it(31+3i)So, as we can see there are complex numbers in both the exponential and vector that we will need to get rid of in order to use this as a solution. Recall from the complex roots section of the second order differential equation chapter that we can use Euler’s formula to get the complex number out of the exponential. Doing this gives us,
x1(t)=(cos(33t)+isin(33t))(31+3i)The next step is to multiply the cosines and sines into the vector.
x1(t)=(3cos(33t)+3isin(33t)cos(33t)isin(33t)+3icos(33t)3sin(33t))Now combine the terms with an “i” in them and split these terms off from those terms that don’t contain an “i”. Also factor the “i” out of this vector.
x1(t)=(3cos(33t)cos(33t)3sin(33t))+i(3sin(33t)sin(33t)+3cos(33t))=u(t)+iv(t)Now, it can be shown (we’ll leave the details to you) that u(t) and v(t) are two linearly independent solutions to the system of differential equations. This means that we can use them to form a general solution and they are both real solutions.
So, the general solution to a system with complex roots is
x(t)=c1u(t)+c2v(t)where u(t) and v(t) are found by writing the first solution as
x(t)=u(t)+iv(t)For our system then, the general solution is,
x(t)=c1(3cos(33t)cos(33t)3sin(33t))+c2(3sin(33t)sin(33t)+3cos(33t))We now need to apply the initial condition to this to find the constants.
(24)=x(0)=c1(31)+c2(03)This leads to the following system of equations to be solved,
3c1=2c1+3c2=4}c1=23,c2=1033The actual solution is then,
x(t)=23(3cos(33t)cos(33t)3sin(33t))1033(3sin(33t)sin(33t)+3cos(33t))

As we did in the last section we’ll do the phase portraits separately from the solution of the system in case phase portraits haven’t been taught in your class.


Example 2 Sketch the phase portrait for the system.x=(3943)x


When the eigenvalues of a matrix A are purely complex, as they are in this case, the trajectories of the solutions will be circles or ellipses that are centered at the origin. The only thing that we really need to concern ourselves with here are whether they are rotating in a clockwise or counterclockwise direction.
This is easy enough to do. Recall when we first looked at these phase portraits a couple of sections ago that if we pick a value of x(t) and plug it into our system we will get a vector that will be tangent to the trajectory at that point and pointing in the direction that the trajectory is traveling. So, let’s pick the following point and see what we get.
x=(10)x=(3943)(10)=(34)Therefore, at the point (1,0) in the phase plane the trajectory will be pointing in a downwards direction. The only way that this can be is if the trajectories are traveling in a clockwise direction.
Here is the sketch of some of the trajectories for this problem.

The equilibrium solution in the case is called a center and is stable.

Note in this last example that the equilibrium solution is stable and not asymptotically stable. Asymptotically stable refers to the fact that the trajectories are moving in toward the equilibrium solution as t increases. In this example the trajectories are simply revolving around the equilibrium solution and not moving in towards it. The trajectories are also not moving away from the equilibrium solution and so they aren’t unstable. Therefore, we call the equilibrium solution stable.

Not all complex eigenvalues will result in centers so let’s take a look at an example where we get something different.


Example 3 Solve the following IVP.x=(31351)xx(0)=(310)


Let’s get the eigenvalues and eigenvectors for the matrix.
det(AλI)=|3λ1351λ|=λ24λ+68λ1,2=2±8iNow get the eigenvector for the first eigenvalue.
λ1=2+8i:
We need to solve the following system.
(18i13518i)(η1η2)=(00)Using the second equation we get,
5η1+(18i)η2=0η1=15(1+8i)η2So, the first eigenvector is,
η=(15(1+8i)η2η2)η(1)=(1+8i5)η2=5The solution corresponding to this eigenvalue and eigenvector is
x1(t)=e(2+8i)t(1+8i5)=e2te8it(1+8i5)=e2t(cos(8t)+isin(8t))(1+8i5)As with the first example multiply cosines and sines into the vector and split it up. Don’t forget about the exponential that is in the solution this time.
x1(t)=e2t(cos(8t)8sin(8t)5cos(8t))+ie2t(8cos(8t)+sin(8t)5sin(8t))=u(t)+iv(t)The general solution to this system then,
x(t)=c1e2t(cos(8t)8sin(8t)5cos(8t))+c2e2t(8cos(8t)+sin(8t)5sin(8t))Now apply the initial condition and find the constants.
(310)=x(0)=c1(15)+c2(80)c1+8c2=35c1=10}c1=2,c2=58The actual solution is then,
x(t)=2e2t(cos(8t)8sin(8t)5cos(8t))+58e2t(8cos(8t)+sin(8t)5sin(8t))

Let’s take a look at the phase portrait for this problem.


Example 4 Sketch the phase portrait for the system.
x=(31351)x


When the eigenvalues of a system are complex with a real part the trajectories will spiral into or out of the origin. We can determine which one it will be by looking at the real portion. Since the real portion will end up being the exponent of an exponential function (as we saw in the solution to this system) if the real part is positive the solution will grow very large as t increases. Likewise, if the real part is negative the solution will die out as t increases.
So, if the real part is positive the trajectories will spiral out from the origin and if the real part is negative they will spiral into the origin. We determine the direction of rotation (clockwise vs. counterclockwise) in the same way that we did for the center.
In our case the trajectories will spiral out from the origin since the real part is positive and
x=(31351)(10)=(35)will rotate in the counterclockwise direction as the last example did.
Here is a sketch of some of the trajectories for this system.
Here we call the equilibrium solution a spiral (oddly enough…) and in this case it’s unstable since the trajectories move away from the origin.



If the real part of the eigenvalue is negative the trajectories will spiral into the origin and in this case the equilibrium solution will be asymptotically stable.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse s...

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see th...

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the d...

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi...

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) ...

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e...

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → ...

Differential Equations - Second Order: Repeated Roots

In this section we will be looking at the last case for the constant coefficient, linear, homogeneous second order differential equations. In this case we want solutions to a y ′′ + b y ′ + c y = 0 a y ″ + b y ′ + c y = 0 where solutions to the characteristic equation a r 2 + b r + c = 0 a r 2 + b r + c = 0 are double roots  r 1 = r 2 = r r 1 = r 2 = r . This leads to a problem however. Recall that the solutions are y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t These are the same solution and will NOT be “nice enough” to form a general solution. We do promise that we’ll define “nice enough” eventually! So, we can use the first solution, but we’re going to need a second solution. Before finding this second solution let’s take a little side trip. The reason for the side trip will be clear eventually. From the quadratic formula we know that the roots to the characteristic equation are, r 1 , 2 = ...

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ (...