Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - Second Order: Undetermined Coefficients - iii




Example 9 Find a particular solution for the following differential equation.y4y12y=e6t

This problem seems almost too simple to be given this late in the section. This is especially true given the ease of finding a particular solution for g(t)’s that are just exponential functions. Also, because the point of this example is to illustrate why it is generally a good idea to have the complementary solution in hand first we’ll let’s go ahead and recall the complementary solution first. Here it is,
yc(t)=c1e2t+c2e6t
Now, without worrying about the complementary solution for a couple more seconds let’s go ahead and get to work on the particular solution. There is not much to the guess here. From our previous work we know that the guess for the particular solution should be,
YP(t)=Ae6tPlugging this into the differential equation gives,
36Ae6t24Ae6t12Ae6t=e6t0=e6tHmmmm…. Something seems wrong here. Clearly an exponential can’t be zero. So, what went wrong? We finally need the complementary solution. Notice that the second term in the complementary solution (listed above) is exactly our guess for the form of the particular solution and now recall that both portions of the complementary solution are solutions to the homogeneous differential equation,
y4y12y=0In other words, we had better have gotten zero by plugging our guess into the differential equation, it is a solution to the homogeneous differential equation!
So, how do we fix this? The way that we fix this is to add a t to our guess as follows.
YP(t)=Ate6tPlugging this into our differential equation gives,
(12Ae6t+36Ate6t)4(Ae6t+6Ate6t)12Ate6t=e6t(36A24A12A)te6t+(12A4A)e6t=e6t8Ae6t=e6tNow, we can set coefficients equal.
8A=1A=18So, the particular solution in this case is,
YP(t)=t8e6t

So, what did we learn from this last example. While technically we don’t need the complementary solution to do undetermined coefficients, you can go through a lot of work only to figure out at the end that you needed to add in a t to the guess because it appeared in the complementary solution. This work is avoidable if we first find the complementary solution and comparing our guess to the complementary solution and seeing if any portion of your guess shows up in the complementary solution.
If a portion of your guess does show up in the complementary solution then we’ll need to modify that portion of the guess by adding in a t to the portion of the guess that is causing the problems. We do need to be a little careful and make sure that we add the t in the correct place however. The following set of examples will show you how to do this.



Example 10 Write down the guess for the particular solution to the given differential equation. Do not find the coefficients.
  1. y+3y28y=7t+e7t1
  2. y100y=9t2e10t+costtsint
  3. 4y+y=e2tsin(t2)+6tcos(t2)
  4. 4y+16y+17y=e2tsin(t2)+6tcos(t2)
  5. y+8y+16y=e4t+(t2+5)e4t


In these solutions we’ll leave the details of checking the complementary solution to you.

a) y+3y28y=7t+e7t1 

The complementary solution is
yc(t)=c1e4t+c2e7tRemembering to put the “-1” with the 7t gives a first guess for the particular solution.
YP(t)=At+B+Ce7tNotice that the last term in the guess is the last term in the complementary solution. The first two terms however aren’t a problem and don’t appear in the complementary solution. Therefore, we will only add a t onto the last term.
The correct guess for the form of the particular solution is.
YP(t)=At+B+Cte7t

b) y100y=9t2e10t+costtsint 

The complementary solution is
yc(t)=c1e10t+c2e10tA first guess for the particular solution is
YP(t)=(At2+Bt+C)e10t+(Et+F)cost+(Gt+H)sintNotice that if we multiplied the exponential term through the parenthesis that we would end up getting part of the complementary solution showing up. Since the problem part arises from the first term the whole first term will get multiplied by t. The second and third terms are okay as they are.
The correct guess for the form of the particular solution in this case is.
YP(t)=t(At2+Bt+C)e10t+(Et+F)cost+(Gt+H)sintSo, in general, if you were to multiply out a guess and if any term in the result shows up in the complementary solution, then the whole term will get a t not just the problem portion of the term.

c) 4y+y=e2tsin(t2)+6tcos(t2) 

The complementary solution is
yc(t)=c1cos(t2)+c2sin(t2)A first guess for the particular solution is
YP(t)=e2t(Acos(t2)+Bsin(t2))+(Ct+D)cos(t2)+(Et+F)sin(t2)In this case both the second and third terms contain portions of the complementary solution. The first term doesn’t however, since upon multiplying out, both the sine and the cosine would have an exponential with them and that isn’t part of the complementary solution. We only need to worry about terms showing up in the complementary solution if the only difference between the complementary solution term and the particular guess term is the constant in front of them.
So, in this case the second and third terms will get a t while the first won’t
The correct guess for the form of the particular solution is.
YP(t)=e2t(Acos(t2)+Bsin(t2))+t(Ct+D)cos(t2)+t(Et+F)sin(t2)

d) 4y+16y+17y=e2tsin(t2)+6tcos(t2) 

To get this problem we changed the differential equation from the last example and left the g(t) alone. The complementary solution this time is
yc(t)=c1e2tcos(t2)+c2e2tsin(t2)As with the last part, a first guess for the particular solution is
YP(t)=e2t(Acos(t2)+Bsin(t2))+(Ct+D)cos(t2)+(Et+F)sin(t2)This time however it is the first term that causes problems and not the second or third. In fact, the first term is exactly the complementary solution and so it will need a t. Recall that we will only have a problem with a term in our guess if it only differs from the complementary solution by a constant. The second and third terms in our guess don’t have the exponential in them and so they don’t differ from the complementary solution by only a constant.
The correct guess for the form of the particular solution is.
YP(t)=te2t(Acos(t2)+Bsin(t2))+(Ct+D)cos(t2)+(Et+F)sin(t2)

e) y+8y+16y=e4t+(t2+5)e4t 

The complementary solution is
yc(t)=c1e4t+c2te4tThe two terms in g(t) are identical with the exception of a polynomial in front of them. So this means that we only need to look at the term with the highest degree polynomial in front of it. A first guess for the particular solution is
YP(t)=(At2+Bt+C)e4tNotice that if we multiplied the exponential term through the parenthesis the last two terms would be the complementary solution. Therefore, we will need to multiply this whole thing by a t.
The next guess for the particular solution is then.
YP(t)=t(At2+Bt+C)e4tThis still causes problems however. If we multiplied the t and the exponential through, the last term will still be in the complementary solution. In this case, unlike the previous ones, a t wasn’t sufficient to fix the problem. So, we will add in another t to our guess.
The correct guess for the form of the particular solution is.
YP(t)=t2(At2+Bt+C)e4tUpon multiplying this out none of the terms are in the complementary solution and so it will be okay.

As this last set of examples has shown, we really should have the complementary solution in hand before even writing down the first guess for the particular solution. By doing this we can compare our guess to the complementary solution and if any of the terms from your particular solution show up we will know that we’ll have problems. Once the problem is identified we can add a t to the problem term(s) and compare our new guess to the complementary solution. If there are no problems we can proceed with the problem, if there are problems add in another t and compare again.



Can you see a general rule as to when a t will be needed and when a t2 will be needed for second order differential equations?

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse s...

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see th...

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the d...

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi...

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) ...

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e...

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → ...

Differential Equations - Second Order: Repeated Roots

In this section we will be looking at the last case for the constant coefficient, linear, homogeneous second order differential equations. In this case we want solutions to a y ′′ + b y ′ + c y = 0 a y ″ + b y ′ + c y = 0 where solutions to the characteristic equation a r 2 + b r + c = 0 a r 2 + b r + c = 0 are double roots  r 1 = r 2 = r r 1 = r 2 = r . This leads to a problem however. Recall that the solutions are y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t These are the same solution and will NOT be “nice enough” to form a general solution. We do promise that we’ll define “nice enough” eventually! So, we can use the first solution, but we’re going to need a second solution. Before finding this second solution let’s take a little side trip. The reason for the side trip will be clear eventually. From the quadratic formula we know that the roots to the characteristic equation are, r 1 , 2 = ...

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ (...