Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Second Order: Undetermined Coefficients - i

In this section we will take a look at the first method that can be used to find a particular solution to a nonhomogeneous differential equation.
y+p(t)y+q(t)y=g(t)
One of the main advantages of this method is that it reduces the problem down to an algebra problem. The algebra can get messy on occasion, but for most of the problems it will not be terribly difficult. Another nice thing about this method is that the complementary solution will not be explicitly required, although as we will see knowledge of the complementary solution will be needed in some cases and so we’ll generally find that as well.
There are two disadvantages to this method. First, it will only work for a fairly small class of g(t)’s. The class of g(t)’s for which the method works, does include some of the more common functions, however, there are many functions out there for which undetermined coefficients simply won’t work. Second, it is generally only useful for constant coefficient differential equations.
The method is quite simple. All that we need to do is look at g(t) and make a guess as to the form of YP(t) leaving the coefficient(s) undetermined (and hence the name of the method). Plug the guess into the differential equation and see if we can determine values of the coefficients. If we can determine values for the coefficients then we guessed correctly, if we can’t find values for the coefficients then we guessed incorrectly.
It’s usually easier to see this method in action rather than to try and describe it, so let’s jump into some examples.


Example 1 Determine a particular solution toy4y12y=3e5t

The point here is to find a particular solution, however the first thing that we’re going to do is find the complementary solution to this differential equation. Recall that the complementary solution comes from solving,
y4y12y=0The characteristic equation for this differential equation and its roots are.
r24r12=(r6)(r+2)=0r1=2,r2=6The complementary solution is then,
yc(t)=c1e2t+c2e6tAt this point the reason for doing this first will not be apparent, however we want you in the habit of finding it before we start the work to find a particular solution. Eventually, as we’ll see, having the complementary solution in hand will be helpful and so it’s best to be in the habit of finding it first prior to doing the work for undetermined coefficients.
Now, let’s proceed with finding a particular solution. As mentioned prior to the start of this example we need to make a guess as to the form of a particular solution to this differential equation. Since g(t) is an exponential and we know that exponentials never just appear or disappear in the differentiation process it seems that a likely form of the particular solution would be
YP(t)=Ae5tNow, all that we need to do is do a couple of derivatives, plug this into the differential equation and see if we can determine what A needs to be.
Plugging into the differential equation gives
25Ae5t4(5Ae5t)12(Ae5t)=3e5t7Ae5t=3e5tSo, in order for our guess to be a solution we will need to choose A so that the coefficients of the exponentials on either side of the equal sign are the same. In other words we need to choose A so that,
7A=3A=37Okay, we found a value for the coefficient. This means that we guessed correctly. A particular solution to the differential equation is then,
YP(t)=37e5t
Before proceeding any further let’s again note that we started off the solution above by finding the complementary solution. This is not technically part the method of Undetermined Coefficients however, as we’ll eventually see, having this in hand before we make our guess for the particular solution can save us a lot of work and/or headache. Finding the complementary solution first is simply a good habit to have so we’ll try to get you in the habit over the course of the next few examples. At this point do not worry about why it is a good habit. We’ll eventually see why it is a good habit.

Now, back to the work at hand. Notice in the last example that we kept saying “a” particular solution, not “the” particular solution. This is because there are other possibilities out there for the particular solution we’ve just managed to find one of them. Any of them will work when it comes to writing down the general solution to the differential equation.

Speaking of which… This section is devoted to finding particular solutions and most of the examples will be finding only the particular solution. However, we should do at least one full blown IVP to make sure that we can say that we’ve done one.


Example 2 Solve the following IVPy4y12y=3e5ty(0)=187y(0)=17

We know that the general solution will be of the form,
y(t)=yc(t)+YP(t)and we already have both the complementary and particular solution from the first example so we don’t really need to do any extra work for this problem.
One of the more common mistakes in these problems is to find the complementary solution and then, because we’re probably in the habit of doing it, apply the initial conditions to the complementary solution to find the constants. This however, is incorrect. The complementary solution is only the solution to the homogeneous differential equation and we are after a solution to the nonhomogeneous differential equation and the initial conditions must satisfy that solution instead of the complementary solution.
So, we need the general solution to the nonhomogeneous differential equation. Taking the complementary solution and the particular solution that we found in the previous example we get the following for a general solution and its derivative.
y(t)=c1e2t+c2e6t37e5ty(t)=2c1e2t+6c2e6t157e5tNow, apply the initial conditions to these.
187=y(0)=c1+c23717=y(0)=2c1+6c2157Solving this system gives c1=2 and c2=1. The actual solution is then.
y(t)=2e2t+e6t37e5t
This will be the only IVP in this section so don’t forget how these are done for nonhomogeneous differential equations!
Let’s take a look at another example that will give the second type of g(t) for which undetermined coefficients will work.


Example 3 Find a particular solution for the following differential equation.y4y12y=sin(2t)

Again, let’s note that we should probably find the complementary solution before we proceed onto the guess for a particular solution. However, because the homogeneous differential equation for this example is the same as that for the first example we won’t bother with that here.
Now, let’s take our experience from the first example and apply that here. The first example had an exponential function in the g(t) and our guess was an exponential. This differential equation has a sine so let’s try the following guess for the particular solution.
YP(t)=Asin(2t)Differentiating and plugging into the differential equation gives,
4Asin(2t)4(2Acos(2t))12(Asin(2t))=sin(2t)Collecting like terms yields
16Asin(2t)8Acos(2t)=sin(2t)We need to pick A so that we get the same function on both sides of the equal sign. This means that the coefficients of the sines and cosines must be equal. Or,
cos(2t):8A=0A=0sin(2t):16A=1A=116Notice two things. First, since there is no cosine on the right hand side this means that the coefficient must be zero on that side. More importantly we have a serious problem here. In order for the cosine to drop out, as it must in order for the guess to satisfy the differential equation, we need to set A=0, but if A=0, the sine will also drop out and that can’t happen. Likewise, choosing A to keep the sine around will also keep the cosine around.
What this means is that our initial guess was wrong. If we get multiple values of the same constant or are unable to find the value of a constant then we have guessed wrong.
One of the nicer aspects of this method is that when we guess wrong our work will often suggest a fix. In this case the problem was the cosine that cropped up. So, to counter this let’s add a cosine to our guess. Our new guess is
YP(t)=Acos(2t)+Bsin(2t)Plugging this into the differential equation and collecting like terms gives,
4Acos(2t)4Bsin(2t)4(2Asin(2t)+2Bcos(2t))12(Acos(2t)+Bsin(2t))=sin(2t)(4A8B12A)cos(2t)+(4B+8A12B)sin(2t)=sin(2t)(16A8B)cos(2t)+(8A16B)sin(2t)=sin(2t)Now, set the coefficients equal
cos(2t):16A8B=0sin(2t):8A16B=1Solving this system gives us
A=140B=120We found constants and this time we guessed correctly. A particular solution to the differential equation is then,
YP(t)=140cos(2t)120sin(2t)

Notice that if we had had a cosine instead of a sine in the last example then our guess would have been the same. In fact, if both a sine and a cosine had shown up we will see that the same guess will also work.

Let’s take a look at the third and final type of basic g(t) that we can have. There are other types of g(t) that we can have, but as we will see they will all come back to two types that we’ve already done as well as the next one.


Example 4 Find a particular solution for the following differential equation.y4y12y=2t3t+3

Once, again we will generally want the complementary solution in hand first, but again we’re working with the same homogeneous differential equation (you’ll eventually see why we keep working with the same homogeneous problem) so we’ll again just refer to the first example.
For this example, g(t) is a cubic polynomial. For this we will need the following guess for the particular solution.
YP(t)=At3+Bt2+Ct+DNotice that even though g(t) doesn’t have a t2 in it our guess will still need one! So, differentiate and plug into the differential equation.
6At+2B4(3At2+2Bt+C)12(At3+Bt2+Ct+D)=2t3t+312At3+(12A12B)t2+(6A8B12C)t+2B4C12D=2t3t+3Now, as we’ve done in the previous examples we will need the coefficients of the terms on both sides of the equal sign to be the same so set coefficients equal and solve.
t3:12A=2A=16t2:12A12B=0B=16t1:6A8B12C=1C=19t0:2B4C12D=3D=527Notice that in this case it was very easy to solve for the constants. The first equation gave A. Then once we knew A the second equation gave Betc. A particular solution for this differential equation is then
YP(t)=16t3+16t219t527

Now that we’ve gone over the three basic kinds of functions that we can use undetermined coefficients on let’s summarize.
g(t)YP(t) guess
aeβtAeβt
acos(βt)Acos(βt)+Bsin(βt)
bsin(βt)Acos(βt)+Bsin(βt)
acos(βt)+bsin(βt)Acos(βt)+Bsin(βt)
nth degree polynomialAntn+An1tn1+A1t+A0

Notice that there are really only three kinds of functions given above. If you think about it the single cosine and single sine functions are really special cases of the case where both the sine and cosine are present. Also, we have not yet justified the guess for the case where both a sine and a cosine show up. We will justify this later.
We now need move on to some more complicated functions. The more complicated functions arise by taking products and sums of the basic kinds of functions. Let’s first look at products.


Example 5 Find a particular solution for the following differential equation.y4y12y=te4t

You’re probably getting tired of the opening comment, but again finding the complementary solution first really a good idea but again we’ve already done the work in the first example so we won’t do it again here. We promise that eventually you’ll see why we keep using the same homogeneous problem and why we say it’s a good idea to have the complementary solution in hand first. At this point all we’re trying to do is reinforce the habit of finding the complementary solution first.
Okay, let’s start off by writing down the guesses for the individual pieces of the function. The guess for the t would be
At+Bwhile the guess for the exponential would be
Ce4tNow, since we’ve got a product of two functions it seems like taking a product of the guesses for the individual pieces might work. Doing this would give
Ce4t(At+B)However, we will have problems with this. As we will see, when we plug our guess into the differential equation we will only get two equations out of this. The problem is that with this guess we’ve got three unknown constants. With only two equations we won’t be able to solve for all the constants.
This is easy to fix however. Let’s notice that we could do the following
Ce4t(At+B)=e4t(ACt+BC)If we multiply the C through, we can see that the guess can be written in such a way that there are really only two constants. So, we will use the following for our guess.
YP(t)=e4t(At+B)Notice that this is nothing more than the guess for the t with an exponential tacked on for good measure.
Now that we’ve got our guess, let’s differentiate, plug into the differential equation and collect like terms.
e4t(16At+16B+8A)4(e4t(4At+4B+A))12(e4t(At+B))=te4t(16A16A12A)te4t+(16B+8A16B4A12B)e4t=te4t12Ate4t+(4A12B)e4t=te4tNote that when we’re collecting like terms we want the coefficient of each term to have only constants in it. Following this rule we will get two terms when we collect like terms. Now, set coefficients equal.
te4t:12A=1A=112e4t:4A12B=0B=136A particular solution for this differential equation is then
YP(t)=e4t(t12136)=136(3t+1)e4t

This last example illustrated the general rule that we will follow when products involve an exponential. When a product involves an exponential we will first strip out the exponential and write down the guess for the portion of the function without the exponential, then we will go back and tack on the exponential without any leading coefficient.

Let’s take a look at some more products. In the interest of brevity we will just write down the guess for a particular solution and not go through all the details of finding the constants. Also, because we aren’t going to give an actual differential equation we can’t deal with finding the complementary solution first.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Partial: Summary of Separation of Variables

Throughout this chapter we’ve been talking about and solving partial differential equations using the method of separation of variables. However, the one thing that we’ve not really done is completely work an example from start to finish showing each and every step. Each partial differential equation that we solved made use somewhere of the fact that we’d done at least part of the problem in another section and so it makes some sense to have a quick summary of the method here. Also note that each of the partial differential equations only involved two variables. The method can often be extended out to more than two variables, but the work in those problems can be quite involved and so we didn’t cover any of that here. So with all of that out of the way here is a quick summary of the method of separation of variables for partial differential equations in two variables. Verify that the partial differential equation is linear and homogeneous. Verify that the boundary condi

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e λ t → η x → = t e λ t η → will also be a

Differential Equations - First Order: Modeling - ii

Example 4  A 50 kg object is shot from a cannon straight up with an initial velocity of 10m/s off a bridge that is 100 meters above the ground. If air resistance is given by 5 v v  determine the velocity of the mass when it hits the ground. First, notice that when we say straight up, we really mean straight up, but in such a way that it will miss the bridge on the way back down. Here is a sketch of the situation. Notice the conventions that we set up for this problem. Since the vast majority of the motion will be in the downward direction we decided to assume that everything acting in the downward direction should be positive. Note that we also defined the “zero position” as the bridge, which makes the ground have a “position” of 100. Okay, if you think about it we actually have two situations here. The initial phase in which the mass is rising in the air and the second phase when the mass is on its way down. We will need to examine both situations and set up an IVP for