Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - Laplace Transforms: Inverse - ii




The last part of this example needed partial fractions to get the inverse transform. When we finally get back to differential equations and we start using Laplace transforms to solve them, you will quickly come to understand that partial fractions are a fact of life in these problems. Almost every problem will require partial fractions to one degree or another.

Note that we could have done the last part of this example as we had done the previous two parts. If we had we would have gotten hyperbolic functions. However, recalling the definition of the hyperbolic functions we could have written the result in the form we got from the way we worked our problem. However, most students have a better feel for exponentials than they do for hyperbolic functions and so it’s usually best to just use partial fractions and get the answer in terms of exponentials. It may be a little more work, but it will give a nicer (and easier to work with) form of the answer.
Be warned that in my class I’ve got a rule that if the denominator can be factored with integer coefficients then it must be.

So, let’s remind you how to get the correct partial fraction decomposition. The first step is to factor the denominator as much as possible. Then for each term in the denominator we will use the following table to get a term or terms for our partial fraction decomposition.

Factor in
denominator
Term in partial
fraction decomposition
ax+bAax+b
(ax+b)kA1ax+b+A2(ax+b)2++Ak(ax+b)k
ax2+bx+cAx+Bax2+bx+c
(ax2+bx+c)kA1x+B1ax2+bx+c+A2x+B2(ax2+bx+c)2++Akx+Bk(ax2+bx+c)k

Notice that the first and third cases are really special cases of the second and fourth cases respectively.

So, let’s do a couple more examples to remind you how to do partial fractions.


Example 3 Find the inverse transform of each of the following.
  1. G(s)=86s78(s+3)(s4)(5s1)
  2. F(s)=25s(s6)(s2+11)
  3. G(s)=25s3(s2+4s+5)

a) G(s)=86s78(s+3)(s4)(5s1) 
Here’s the partial fraction decomposition for this part.
G(s)=As+3+Bs4+C5s1Now, this time we won’t go into quite the detail as we did in the last example. We are after the numerator of the partial fraction decomposition and this is usually easy enough to do in our heads. Therefore, we will go straight to setting numerators equal.
86s78=A(s4)(5s1)+B(s+3)(5s1)+C(s+3)(s4)As with the last example, we can easily get the constants by correctly picking values of s.
s=3336=A(7)(16)A=3s=153045=C(165)(195)C=5s=4266=B(7)(19)B=2So, the partial fraction decomposition for this transform is,
G(s)=3s+3+2s4+55s1Now, in order to actually take the inverse transform we will need to factor a 5 out of the denominator of the last term. The corrected transform as well as its inverse transform is.
G(s)=3s+3+2s4+1s15g(t)=3e3t+2e4t+et5

b) F(s)=25s(s6)(s2+11) 
So, for the first time we’ve got a quadratic in the denominator. Here’s the decomposition for this part.
F(s)=As6+Bs+Cs2+11Setting numerators equal gives,
25s=A(s2+11)+(Bs+C)(s6)Okay, in this case we could use s=6 to quickly find A, but that’s all it would give. In this case we will need to go the “long” way around to getting the constants. Note that this way will always work but is sometimes more work than is required.
The “long” way is to completely multiply out the right side and collect like terms.
25s=A(s2+11)+(Bs+C)(s6)=As2+11A+Bs26B+Cs6C=(A+B)s2+(6B+C)s+11A6CIn order for these two to be equal the coefficients of the s2s and the constants must all be equal. So, setting coefficients equal gives the following system of equations that can be solved.
s2:A+B=0s1:6B+C=5s0:11A6C=2}A=2847,B=2847,C=6747Notice that we used s0 to denote the constants. This is habit on my part and isn’t really required, it’s just what I’m used to doing. Also, the coefficients are fairly messy fractions in this case. Get used to that. They will often be like this when we get back into solving differential equations.
There is a way to make our life a little easier as well with this. Since all of the fractions have a denominator of 47 we’ll factor that out as we plug them back into the decomposition. This will make dealing with them much easier. The partial fraction decomposition is then,
F(s)=147(28s6+28s67s2+11)=147(28s6+28ss2+11671111s2+11)The inverse transform is then.
f(t)=147(28e6t+28cos(11t)6711sin(11t))

c) G(s)=25s3(s2+4s+5) 
With this last part do not get excited about the s3. We can think of this term as
s3=(s0)3and it becomes a linear term to a power. So, the partial fraction decomposition is
G(s)=As+Bs2+Cs3+Ds+Es2+4s+5Setting numerators equal and multiplying out gives.
25=As2(s2+4s+5)+Bs(s2+4s+5)+C(s2+4s+5)+(Ds+E)s3=(A+D)s4+(4A+B+E)s3+(5A+4B+C)s2+(5B+4C)s+5CSetting coefficients equal gives the following system.
s4:A+D=0s3:4A+B+E=0s2:5A+4B+C=0s1:5B+4C=0s0:5C=25}A=115,B=4,C=5,D=115,E=245This system looks messy, but it’s easier to solve than it might look. First, we get C for free from the last equation. We can then use the fourth equation to find B. The third equation will then give Aetc.
When plugging into the decomposition we’ll get everything with a denominator of 5, then factor that out as we did in the previous part in order to make things easier to deal with.
G(s)=15(11s20s2+25s311s+24s2+4s+5)Note that we also factored a minus sign out of the last two terms. To complete this part we’ll need to complete the square on the later term and fix up a couple of numerators. Here’s that work.
G(s)=15(11s20s2+25s311s+24s2+4s+5)=15(11s20s2+25s311(s+22)+24(s+2)2+1)=15(11s20s2+252!2!s311(s+2)(s+2)2+12(s+2)2+1)The inverse transform is then.
g(t)=15(1120t+252t211e2tcos(t)2e2tsin(t))


So, one final time. Partial fractions are a fact of life when using Laplace transforms to solve differential equations. Make sure that you can deal with them.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse s...

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see th...

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the d...

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi...

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) ...

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e...

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → ...

Differential Equations - Second Order: Repeated Roots

In this section we will be looking at the last case for the constant coefficient, linear, homogeneous second order differential equations. In this case we want solutions to a y ′′ + b y ′ + c y = 0 a y ″ + b y ′ + c y = 0 where solutions to the characteristic equation a r 2 + b r + c = 0 a r 2 + b r + c = 0 are double roots  r 1 = r 2 = r r 1 = r 2 = r . This leads to a problem however. Recall that the solutions are y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t These are the same solution and will NOT be “nice enough” to form a general solution. We do promise that we’ll define “nice enough” eventually! So, we can use the first solution, but we’re going to need a second solution. Before finding this second solution let’s take a little side trip. The reason for the side trip will be clear eventually. From the quadratic formula we know that the roots to the characteristic equation are, r 1 , 2 = ...

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ (...