Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - Laplace Transforms: Nonconstant Coefficient IVP's


In this section we are going to see how Laplace transforms can be used to solve some differential equations that do not have constant coefficients. This is not always an easy thing to do. However, there are some simple cases that can be done.

To do this we will need a quick fact.


Fact


If f(t) is a piecewise continuous function on [0,) of exponential order then,
(1)limsF(s)=0

A function f(t) is said to be of exponential order α if there exists positive constants T and M such that
|f(t)|Meαtfor all tT
Put in other words, a function that is of exponential order will grow no faster than
Meαt
for some M and α and all sufficiently large t. One way to check whether a function is of exponential order or not is to compute the following limit.
limt|f(t)|eαt
If this limit is finite for some α then the function will be of exponential order α. Likewise, if the limit is infinite for every a then the function is not of exponential order.
Almost all of the functions that you are liable to deal with in a first course in differential equations are of exponential order. A good example of a function that is not of exponential order is
f(t)=et3
We can check this by computing the above limit.
limtet3eαt=limtet3αt=limtet(t2α)=
This is true for any value of α and so the function is not of exponential order.
Do not worry too much about this exponential order stuff. This fact is occasionally needed in using Laplace transforms with non constant coefficients.
So, let’s take a look at an example.


Example 1 Solve the following IVP.y+3ty6y=2,y(0)=0y(0)=0


So, for this one we will need to recall that #30 in our table of Laplace transforms tells us that,
L{ty}=dds(L{y})=dds(sY(s)y(0))=sY(s)Y(s)So, upon taking the Laplace transforms of everything and plugging in the initial conditions we get,
s2Y(s)sy(0)y(0)+3(sY(s)Y(s))6Y(s)=2s3sY(s)+(s29)Y(s)=2sY(s)+(3ss3)Y(s)=23s2Unlike the examples in the previous section where we ended up with a transform for the solution, here we get a linear first order differential equation that must be solved in order to get a transform for the solution.
The integrating factor for this differential equation is,
μ(s)=e(3ss3)ds=eln(s3)s26=s3es26Multiplying through, integrating and solving for Y(s) gives,
(s3es26Y(s))ds=23ses26dss3es26Y(s)=2es26+cY(s)=2s3+ces26s3Now, we have a transform for the solution. However, that second term looks unlike anything we’ve seen to this point. This is where the fact about the transforms of exponential order functions comes into play. We are going to assume that whatever our solution is, it is of exponential order. This means that
lims(2s3+ces26s3)=0The first term does go to zero in the limit. The second term however, will only go to zero if c=0. Therefore, we must have c=0 in order for this to be the transform of our solution.
So, the transform of our solution, as well as the solution is,
Y(s)=2s3y(t)=t2We’ll leave it to you to verify that this is in fact a solution if you’d like to.

Now, not all nonconstant differential equations need to use (1). So, let’s take a look at one more example.


Example 2 Solve the following IVP.tyty+y=2,y(0)=2y(0)=4


From the first example we have,
L{ty}=sY(s)Y(s)We’ll also need,
L{ty}=dds(L{y})=dds(s2Y(s)sy(0)y(0))=s2Y(s)2sY(s)+y(0)Taking the Laplace transform of everything and plugging in the initial conditions gives,
s2Y(s)2sY(s)+y(0)(sY(s)Y(s))+Y(s)=2s(ss2)Y(s)+(22s)Y(s)+2=2ss(1s)Y(s)+2(1s)Y(s)=2(1s)sY(s)+2sY(s)=2s2Once again we have a linear first order differential equation that we must solve in order to get a transform for the solution. Notice as well that we never used the second initial condition in this work. That is okay, we will use it eventually.
Since this linear differential equation is much easier to solve compared to the first one, we’ll leave the details to you. Upon solving the differential equation we get,
Y(s)=2s+cs2Now, this transform goes to zero for all values of c and we can take the inverse transform of the second term. Therefore, we won’t need to use (1) to get rid of the second term as did in the previous example.
Taking the inverse transform gives,
y(t)=2+ctNow, this is where we will use the second initial condition. Upon differentiating and plugging in the second initial condition we can see that c=4.
So, the solution to this IVP is,
y(t)=24t

So, we’ve seen how to use Laplace transforms to solve some nonconstant coefficient differential equations. Notice however that all we did was add in an occasional t to the coefficients. We couldn’t get too complicated with the coefficients. If we had we would not have been able to easily use Laplace transforms to solve them.



Sometimes Laplace transforms can be used to solve nonconstant differential equations, however, in general, nonconstant differential equations are still very difficult to solve.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse s...

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see th...

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the d...

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi...

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) ...

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e...

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → ...

Differential Equations - Second Order: Repeated Roots

In this section we will be looking at the last case for the constant coefficient, linear, homogeneous second order differential equations. In this case we want solutions to a y ′′ + b y ′ + c y = 0 a y ″ + b y ′ + c y = 0 where solutions to the characteristic equation a r 2 + b r + c = 0 a r 2 + b r + c = 0 are double roots  r 1 = r 2 = r r 1 = r 2 = r . This leads to a problem however. Recall that the solutions are y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t y 1 ( t ) = e r 1 t = e r t y 2 ( t ) = e r 2 t = e r t These are the same solution and will NOT be “nice enough” to form a general solution. We do promise that we’ll define “nice enough” eventually! So, we can use the first solution, but we’re going to need a second solution. Before finding this second solution let’s take a little side trip. The reason for the side trip will be clear eventually. From the quadratic formula we know that the roots to the characteristic equation are, r 1 , 2 = ...

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ (...