Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Laplace Transforms: Solving Initial Value Problems - i


It’s now time to get back to differential equations. We’ve spent the last three sections learning how to take Laplace transforms and how to take inverse Laplace transforms. These are going to be invaluable skills for the next couple of sections so don’t forget what we learned there.

Before proceeding into differential equations we will need one more formula. We will need to know how to take the Laplace transform of a derivative. First recall that f(n) denotes the nth derivative of the function f. We now have the following fact.


Fact


Suppose that fff,… f(n1) are all continuous functions and f(n) is a piecewise continuous function. Then,
L{f(n)}=snF(s)sn1f(0)sn2f(0)sf(n2)(0)f(n1)(0)

Since we are going to be dealing with second order differential equations it will be convenient to have the Laplace transform of the first two derivatives.
L{y}=sY(s)y(0)L{y}=s2Y(s)sy(0)y(0)
Notice that the two function evaluations that appear in these formulas, y(0) and y(0), are often what we’ve been using for initial condition in our IVP’s. So, this means that if we are to use these formulas to solve an IVP we will need initial conditions at t=0.
While Laplace transforms are particularly useful for nonhomogeneous differential equations which have Heaviside functions in the forcing function we’ll start off with a couple of fairly simple problems to illustrate how the process works.


Example 1 Solve the following IVP.y10y+9y=5t,y(0)=1y(0)=2


The first step in using Laplace transforms to solve an IVP is to take the transform of every term in the differential equation.
L{y}10L{y}+9L{y}=L{5t}Using the appropriate formulas from our table of Laplace transforms gives us the following.
s2Y(s)sy(0)y(0)10(sY(s)y(0))+9Y(s)=5s2Plug in the initial conditions and collect all the terms that have a Y(s) in them.
(s210s+9)Y(s)+s12=5s2Solve for Y(s).
Y(s)=5s2(s9)(s1)+12s(s9)(s1)At this point it’s convenient to recall just what we’re trying to do. We are trying to find the solution, y(t), to an IVP. What we’ve managed to find at this point is not the solution, but its Laplace transform. So, in order to find the solution all that we need to do is to take the inverse transform.
Before doing that let’s notice that in its present form we will have to do partial fractions twice. However, if we combine the two terms up we will only be doing partial fractions once. Not only that, but the denominator for the combined term will be identical to the denominator of the first term. This means that we are going to partial fraction up a term with that denominator no matter what so we might as well make the numerator slightly messier and then just partial fraction once.
This is one of those things where we are apparently making the problem messier, but in the process we are going to save ourselves a fair amount of work!
Combining the two terms gives,
Y(s)=5+12s2s3s2(s9)(s1)The partial fraction decomposition for this transform is,
Y(s)=As+Bs2+Cs9+Ds1Setting numerators equal gives,
5+12s2s3=As(s9)(s1)+B(s9)(s1)+Cs2(s1)+Ds2(s9)Picking appropriate values of s and solving for the constants gives,
s=05=9BB=59s=116=8DD=2s=9248=648CC=3181s=245=14A+434581A=5081Plugging in the constants gives,
Y(s)=5081s+59s2+3181s92s1Finally taking the inverse transform gives us the solution to the IVP.
y(t)=5081+59t+3181e9t2et

That was a fair amount of work for a problem that probably could have been solved much quicker using the techniques from the previous chapter. The point of this problem however, was to show how we would use Laplace transforms to solve an IVP.

There are a couple of things to note here about using Laplace transforms to solve an IVP. First, using Laplace transforms reduces a differential equation down to an algebra problem. In the case of the last example the algebra was probably more complicated than the straight forward approach from the last chapter. However, in later problems this will be reversed. The algebra, while still very messy, will often be easier than a straight forward approach.
Second, unlike the approach in the last chapter, we did not need to first find a general solution, differentiate this, plug in the initial conditions and then solve for the constants to get the solution. With Laplace transforms, the initial conditions are applied during the first step and at the end we get the actual solution instead of a general solution.


In many of the later problems Laplace transforms will make the problems significantly easier to work than if we had done the straight forward approach of the last chapter. Also, as we will see, there are some differential equations that simply can’t be done using the techniques from the last chapter and so, in those cases, Laplace transforms will be our only solution.
Let’s take a look at another fairly simple problem.


Example 2 Solve the following IVP.2y+3y2y=te2t,y(0)=0y(0)=2


As with the first example, let’s first take the Laplace transform of all the terms in the differential equation. We’ll the plug in the initial conditions to get,
2(s2Y(s)sy(0)y(0))+3(sY(s)y(0))2Y(s)=1(s+2)2(2s2+3s2)Y(s)+4=1(s+2)2Now solve for Y(s).
Y(s)=1(2s1)(s+2)34(2s1)(s+2)Now, as we did in the last example we’ll go ahead and combine the two terms together as we will have to partial fraction up the first denominator anyway, so we may as well make the numerator a little more complex and just do a single partial fraction. This will give,
Y(s)=14(s+2)2(2s1)(s+2)3=4s216s15(2s1)(s+2)3The partial fraction decomposition is then,
Y(s)=A2s1+Bs+2+C(s+2)2+D(s+2)3Setting numerator equal gives,
4s216s15=A(s+2)3+B(2s1)(s+2)2+C(2s1)(s+2)+D(2s1)=(A+2B)s3+(6A+7B+2C)s2+(12A+4B+3C+2D)s+8A4B2CDIn this case it’s probably easier to just set coefficients equal and solve the resulting system of equation rather than pick values of s. So, here is the system and its solution.
s3:A+2B=0s2:6A+7B+2C=4s1:12A+4B+3C+2D=16s0:8A4B2CD=15}A=192125B=96125C=225D=15We will get a common denominator of 125 on all these coefficients and factor that out when we go to plug them back into the transform. Doing this gives,
Y(s)=1125(1922(s12)+96s+210(s+2)2252!2!(s+2)3)Notice that we also had to factor a 2 out of the denominator of the first term and fix up the numerator of the last term in order to get them to match up to the correct entries in our table of transforms.
Taking the inverse transform then gives,
y(t)=1125(96et2+96e2t10te2t252t2e2t)

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Partial: Summary of Separation of Variables

Throughout this chapter we’ve been talking about and solving partial differential equations using the method of separation of variables. However, the one thing that we’ve not really done is completely work an example from start to finish showing each and every step. Each partial differential equation that we solved made use somewhere of the fact that we’d done at least part of the problem in another section and so it makes some sense to have a quick summary of the method here. Also note that each of the partial differential equations only involved two variables. The method can often be extended out to more than two variables, but the work in those problems can be quite involved and so we didn’t cover any of that here. So with all of that out of the way here is a quick summary of the method of separation of variables for partial differential equations in two variables. Verify that the partial differential equation is linear and homogeneous. Verify that the boundary condi

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e λ t → η x → = t e λ t η → will also be a

Differential Equations - First Order: Modeling - ii

Example 4  A 50 kg object is shot from a cannon straight up with an initial velocity of 10m/s off a bridge that is 100 meters above the ground. If air resistance is given by 5 v v  determine the velocity of the mass when it hits the ground. First, notice that when we say straight up, we really mean straight up, but in such a way that it will miss the bridge on the way back down. Here is a sketch of the situation. Notice the conventions that we set up for this problem. Since the vast majority of the motion will be in the downward direction we decided to assume that everything acting in the downward direction should be positive. Note that we also defined the “zero position” as the bridge, which makes the ground have a “position” of 100. Okay, if you think about it we actually have two situations here. The initial phase in which the mass is rising in the air and the second phase when the mass is on its way down. We will need to examine both situations and set up an IVP for