Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Fourier Series: Periodic & Orthogonal Functions - i


This is going to be a short section. We just need to have a brief discussion about a couple of ideas that we’ll be dealing with on occasion as we move into the next topic of this chapter.

Periodic Function

The first topic we need to discuss is that of a periodic function. A function is said to be periodic with period T if the following is true,
f(x+T)=f(x)for all x
The following is a nice little fact about periodic functions.

Fact 1

If f and g are both periodic functions with period T then so is f+g and fg.
This is easy enough to prove so let’s do that.
(f+g)(x+T)=f(x+T)+g(x+T)=f(x)+g(x)=(f+g)(x)(fg)(x+T)=f(x+T)g(x+T)=f(x)g(x)=(fg)(x)
The two periodic functions that most of us are familiar are sine and cosine and in fact we’ll be using these two functions regularly in the remaining sections of this chapter. So, having said that let’s close off this discussion of periodic functions with the following fact,

Fact 2

sin(ωx) and cos(ωx) are periodic functions with period T=2πω.

Even and Odd Functions

The next quick idea that we need to discuss is that of even and odd functions.
Recall that a function is said to be even if,
f(x)=f(x)
and a function is said to be odd if,
f(x)=f(x)
The standard examples of even functions are f(x)=x2 and g(x)=cos(x) while the standard examples of odd functions are f(x)=x3 and g(x)=sin(x). The following fact about certain integrals of even/odd functions will be useful in some of our work.

Fact 3

  1. If f(x) is an even function then,LLf(x)dx=20Lf(x)dx
  2. If f(x) is an odd function then,LLf(x)dx=0
Note that this fact is only valid on a “symmetric” interval, i.e. an interval in the form [L,L]. If we aren’t integrating on a “symmetric” interval then the fact may or may not be true.

Orthogonal Functions

The final topic that we need to discuss here is that of orthogonal functions. This idea will be integral to what we’ll be doing in the remainder of this chapter and in the next chapter as we discuss one of the basic solution methods for partial differential equations.
Let’s first get the definition of orthogonal functions out of the way.

Definition

  1. Two non-zero functions, f(x) and g(x), are said to be orthogonal on axb if,abf(x)g(x)dx=0
  2. A set of non-zero functions, {fi(x)}, is said to be mutually orthogonal on axb (or just an orthogonal set if we’re being lazy) if fi(x) and fj(x) are orthogonal for every ij. In other words,
    abfi(x)fj(x)dx={0ijc>0i=j

Note that in the case of i=j for the second definition we know that we’ll get a positive value from the integral because,
abfi(x)fi(x)dx=ab[fi(x)]2dx>0
Recall that when we integrate a positive function we know the result will be positive as well.
Also note that the non-zero requirement is important because otherwise the integral would be trivially zero regardless of the other function we were using.
Before we work some examples there are a nice set of trig formulas that we’ll need to help us with some of the integrals.
sinαcosβ=12[sin(αβ)+sin(α+β)]sinαsinβ=12[cos(αβ)cos(α+β)]cosαcosβ=12[cos(αβ)+cos(α+β)]
Now let’s work some examples that we’ll need over the course of the next couple of sections.


Example 1 Show that {cos(nπxL)}n=0 is mutually orthogonal on LxL.

This is not too difficult to do. All we really need to do is evaluate the following integral.
LLcos(nπxL)cos(mπxL)dxBefore we start evaluating this integral let’s notice that the integrand is the product of two even functions and so must also be even. This means that we can use Fact 3 above to write the integral as,
LLcos(nπxL)cos(mπxL)dx=20Lcos(nπxL)cos(mπxL)dxThere are two reasons for doing this. First having a limit of zero will often make the evaluation step a little easier and that will be the case here. We’ll discuss the second reason after we’re done with the example.
Now, in order to do this integral we’ll actually need to consider three cases.
n=m=0_
In this case the integral is very easy and is,

LLdx=20Ldx=2Ln=m0_
This integral is a little harder than the first case, but not by much (provided we recall a simple trig formula). The integral for this case is,

LLcos2(nπxL)dx=20Lcos2(nπxL)dx=0L1+cos(2nπxL)dx=(x+L2nπsin(2nπxL))|0L=L+L2nπsin(2nπ)Now, at this point we need to recall that n is an integer and so sin(2nπ)=0 and our final value for the integral is,
LLcos2(nπxL)dx=20Lcos2(nπxL)dx=LThe first two cases are really just showing that if n=m the integral is not zero (as it shouldn’t be) and depending upon the value of n (and hence m) we get different values of the integral. Now we need to do the third case and this, in some ways, is the important case since we must get zero out of this integral in order to know that the set is an orthogonal set. So, let’s take care of the final case.
nm_
This integral is the “messiest” of the three that we’ve had to do here. Let’s just start off by writing the integral down.

LLcos(nπxL)cos(mπxL)dx=20Lcos(nπxL)cos(mπxL)dxIn this case we can’t combine/simplify as we did in the previous two cases. We can however, acknowledge that we’ve got a product of two cosines with different arguments and so we can use one of the trig formulas above to break up the product as follows,
LLcos(nπxL)cos(mπxL)dx=20Lcos(nπxL)cos(mπxL)dx=0Lcos((nm)πxL)+cos((n+m)πxL)dx=[L(nm)πsin((nm)πxL)+L(n+m)πsin((n+m)πxL)]0L=L(nm)πsin((nm)π)+L(n+m)πsin((n+m)π)Now, we know that n and m are both integers and so nm and n+m are also integers and so both of the sines above must be zero and all together we get,
LLcos(nπxL)cos(mπxL)dx=20Lcos(nπxL)cos(mπxL)dx=0So, we’ve shown that if nm the integral is zero and if n=m the value of the integral is a positive constant and so the set is mutually orthogonal.

In all of the work above we kept both forms of the integral at every step. Let’s discuss why we did this a little bit. By keeping both forms of the integral around we were able to show that not only is {cos(nπxL)}n=0 mutually orthogonal on LxL but it is also mutually orthogonal on 0xL. The only difference is the value of the integral when n=mand we can get those values from the work above.
Let’s take a look at another example.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Partial: Summary of Separation of Variables

Throughout this chapter we’ve been talking about and solving partial differential equations using the method of separation of variables. However, the one thing that we’ve not really done is completely work an example from start to finish showing each and every step. Each partial differential equation that we solved made use somewhere of the fact that we’d done at least part of the problem in another section and so it makes some sense to have a quick summary of the method here. Also note that each of the partial differential equations only involved two variables. The method can often be extended out to more than two variables, but the work in those problems can be quite involved and so we didn’t cover any of that here. So with all of that out of the way here is a quick summary of the method of separation of variables for partial differential equations in two variables. Verify that the partial differential equation is linear and homogeneous. Verify that the boundary condi

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e λ t → η x → = t e λ t η → will also be a

Differential Equations - First Order: Modeling - ii

Example 4  A 50 kg object is shot from a cannon straight up with an initial velocity of 10m/s off a bridge that is 100 meters above the ground. If air resistance is given by 5 v v  determine the velocity of the mass when it hits the ground. First, notice that when we say straight up, we really mean straight up, but in such a way that it will miss the bridge on the way back down. Here is a sketch of the situation. Notice the conventions that we set up for this problem. Since the vast majority of the motion will be in the downward direction we decided to assume that everything acting in the downward direction should be positive. Note that we also defined the “zero position” as the bridge, which makes the ground have a “position” of 100. Okay, if you think about it we actually have two situations here. The initial phase in which the mass is rising in the air and the second phase when the mass is on its way down. We will need to examine both situations and set up an IVP for