Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Differential Equations - Second Order: Reduction of Order




We’re now going to take a brief detour and look at solutions to non-constant coefficient, second order differential equations of the form.
p(t)y+q(t)y+r(t)y=0
In general, finding solutions to these kinds of differential equations can be much more difficult than finding solutions to constant coefficient differential equations. However, if we already know one solution to the differential equation we can use the method that we used in the last section to find a second solution. This method is called reduction of order.
Let’s take a quick look at an example to see how this is done.


Example 1 Find the general solution to2t2y+ty3y=0,t>0given that y1(t)=t1 is a solution.


Reduction of order requires that a solution already be known. Without this known solution we won’t be able to do reduction of order.
Once we have this first solution we will then assume that a second solution will have the form
(1)y2(t)=v(t)y1(t)for a proper choice of v(t). To determine the proper choice, we plug the guess into the differential equation and get a new differential equation that can be solved for v(t).
So, let’s do that for this problem. Here is the form of the second solution as well as the derivatives that we’ll need.
y2(t)=t1vy2(t)=t2v+t1vy2(t)=2t3v2t2v+t1vPlugging these into the differential equation gives
2t2(2t3v2t2v+t1v)+t(t2v+t1v)3(t1v)=0Rearranging and simplifying gives
2tv+(4+1)v+(4t1t13t1)v=02tv3v=0Note that upon simplifying the only terms remaining are those involving the derivatives of v. The term involving v drops out. If you’ve done all of your work correctly this should always happen. Sometimes, as in the repeated roots case, the first derivative term will also drop out.
So, in order for (1) to be a solution then v must satisfy
(2)2tv3v=0This appears to be a problem. In order to find a solution to a second order non-constant coefficient differential equation we need to solve a different second order non-constant coefficient differential equation.
However, this isn’t the problem that it appears to be. Because the term involving the v drops out we can actually solve (2) and we can do it with the knowledge that we already have at this point. We will solve this by making the following change of variable.
w=vw=vWith this change of variable (2) becomes
2tw3w=0and this is a linear, first order differential equation that we can solve. This also explains the name of this method. We’ve managed to reduce a second order differential equation down to a first order differential equation.
This is a fairly simple first order differential equation so I’ll leave the details of the solving to you. If you need a refresher on solving linear, first order differential equations go back to the second chapter and check out that section. The solution to this differential equation is
w(t)=ct32Now, this is not quite what we were after. We are after a solution to (2). However, we can now find this. Recall our change of variable.
v=wWith this we can easily solve for v(t).
v(t)=wdt=ct32dt=25ct52+kThis is the most general possible v(t) that we can use to get a second solution. So, just as we did in the repeated roots section, we can choose the constants to be anything we want so choose them to clear out all the extraneous constants. In this case we can use
c=52k=0Using these gives the following for v(t) and for the second solution.
v(t)=t52y2(t)=t1(t52)=t32Then general solution will then be,
y(t)=c1t1+c2t32If we had been given initial conditions we could then differentiate, apply the initial conditions and solve for the constants.

Reduction of order, the method used in the previous example can be used to find second solutions to differential equations. However, this does require that we already have a solution and often finding that first solution is a very difficult task and often in the process of finding the first solution you will also get the second solution without needing to resort to reduction of order. So, for those cases when we do have a first solution this is a nice method for getting a second solution.
Let’s do one more example.


Example 2 Find the general solution tot2y+2ty2y=0given that y1(t)=t is a solution.


The form for the second solution as well as its derivatives are,
y2(t)=tvy2(t)=v+tvy2(t)=2v+tvPlugging these into the differential equation gives,
t2(2v+tv)+2t(v+tv)2(tv)=0=0Rearranging and simplifying gives the differential equation that we’ll need to solve in order to determine the correct v that we’ll need for the second solution.
t3v+4t2v=0Next use the variable transformation as we did in the previous example.
w=vw=vWith this change of variable the differential equation becomes
t3w+4t2w=0and this is a linear, first order differential equation that we can solve. We’ll leave the details of the solution process to you.
w(t)=ct4Now solve for v(t).
v(t)=wdt=ct4dt=13ct3+kAs with the first example we’ll drop the constants and use the following v(t)
v(t)=t3y2(t)=t(t3)=t2Then general solution will then be,
y(t)=c1t+c2t2
On a side note, both of the differential equations in this section were of the form,
t2y+αty+βy=0
These are called Euler differential equations and are fairly simple to solve directly for both solutions. To see how to solve these directly take a look at the Euler Differential Equation section.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse signal can

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see this will lead to a differential equation that we can solve. We are going to have to be c

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the differential equation and see what we get. First notice that

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a vector. Note as we

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) Now, again compare, both the equations just as w

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a function of time, velocity, and/or position. So, with all these things in

Differential Equations - Partial: Summary of Separation of Variables

Throughout this chapter we’ve been talking about and solving partial differential equations using the method of separation of variables. However, the one thing that we’ve not really done is completely work an example from start to finish showing each and every step. Each partial differential equation that we solved made use somewhere of the fact that we’d done at least part of the problem in another section and so it makes some sense to have a quick summary of the method here. Also note that each of the partial differential equations only involved two variables. The method can often be extended out to more than two variables, but the work in those problems can be quite involved and so we didn’t cover any of that here. So with all of that out of the way here is a quick summary of the method of separation of variables for partial differential equations in two variables. Verify that the partial differential equation is linear and homogeneous. Verify that the boundary condi

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e λ t → η x → = t e λ t η → will also be a

Differential Equations - First Order: Modeling - ii

Example 4  A 50 kg object is shot from a cannon straight up with an initial velocity of 10m/s off a bridge that is 100 meters above the ground. If air resistance is given by 5 v v  determine the velocity of the mass when it hits the ground. First, notice that when we say straight up, we really mean straight up, but in such a way that it will miss the bridge on the way back down. Here is a sketch of the situation. Notice the conventions that we set up for this problem. Since the vast majority of the motion will be in the downward direction we decided to assume that everything acting in the downward direction should be positive. Note that we also defined the “zero position” as the bridge, which makes the ground have a “position” of 100. Okay, if you think about it we actually have two situations here. The initial phase in which the mass is rising in the air and the second phase when the mass is on its way down. We will need to examine both situations and set up an IVP for