Skip to main content

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Equilibrium Solutions



In the previous section we modeled a population based on the assumption that the growth rate would be a constant. However, in reality this doesn’t make much sense. Clearly a population cannot be allowed to grow forever at the same rate. The growth rate of a population needs to depend on the population itself. Once a population reaches a certain point the growth rate will start reduce, often drastically. A much more realistic model of a population growth is given by the logistic growth equation. Here is the logistic growth equation.
P=r(1PK)P
In the logistic growth equation r is the intrinsic growth rate and is the same r as in the last section. In other words, it is the growth rate that will occur in the absence of any limiting factors. K is called either the saturation level or the carrying capacity.
Now, we claimed that this was a more realistic model for a population. Let’s see if that in fact is correct. To allow us to sketch a direction field let’s pick a couple of numbers for r and K. We’ll use r=12 and K=10. For these values the logistics equation is.
P=12(1P10)P
If you need a refresher on sketching direction fields go back and take a look at that section. First notice that the derivative will be zero at P=0 and P=10. Also notice that these are in fact solutions to the differential equation. These two values are called equilibrium solutions since they are constant solutions to the differential equation. We’ll leave the rest of the details on sketching the direction field to you. Here is the direction field as well as a couple of solutions sketched in as well.


Note, that we included a small portion of negative P’s in here even though they really don’t make any sense for a population problem. The reason for this will be apparent down the road. Also, notice that a population of say 8 doesn’t make all that much sense so let’s assume that population is in thousands or millions so that 8 actually represents 8,000 or 8,000,000 individuals in a population.

Notice that if we start with a population of zero, there is no growth and the population stays at zero. So, the logistic equation will correctly figure out that. Next, notice that if we start with a population in the range 0<P(0)<10 then the population will grow, but start to level off once we get close to a population of 10. If we start with a population of 10, the population will stay at 10. Finally, if we start with a population that is greater than 10, then the population will actually die off until we start nearing a population of 10, at which point the population decline will start to slow down.

Now, from a realistic standpoint this should make some sense. Populations can’t just grow forever without bound. Eventually the population will reach such a size that the resources of an area are no longer able to sustain the population and the population growth will start to slow as it comes closer to this threshold. Also, if you start off with a population greater than what an area can sustain there will actually be a die off until we get near to this threshold.

In this case that threshold appears to be 10, which is also the value of K for our problem. That should explain the name that we gave K initially. The carrying capacity or saturation level of an area is the maximum sustainable population for that area.
So, the logistics equation, while still quite simplistic, does a much better job of modeling what will happen to a population.
Now, let’s move on to the point of this section. The logistics equation is an example of an autonomous differential equation. Autonomous differential equations are differential equations that are of the form.
dydt=f(y)
The only place that the independent variable, t in this case, appears is in the derivative.
Notice that if f(y0)=0 for some value y=y0 then this will also be a solution to the differential equation. These values are called equilibrium solutions or equilibrium points. What we would like to do is classify these solutions. By classify we mean the following. If solutions start “near” an equilibrium solution will they move away from the equilibrium solution or towards the equilibrium solution? Upon classifying the equilibrium solutions we can then know what all the other solutions to the differential equation will do in the long term simply by looking at which equilibrium solutions they start near.
So, just what do we mean by “near”? Go back to our logistics equation.
P=12(1P10)P
As we pointed out there are two equilibrium solutions to this equation P=0 and P=10. If we ignore the fact that we’re dealing with population these points break up the P number line into three distinct regions.
<P<00<P<1010<P<
We will say that a solution starts “near” an equilibrium solution if it starts in a region that is on either side of that equilibrium solution. So, solutions that start “near” the equilibrium solution P=10 will start in either
0<P<10OR10<P<
and solutions that start “near” P=0 will start in either
<P<0OR0<P<10
For regions that lie between two equilibrium solutions we can think of any solutions starting in that region as starting “near” either of the two equilibrium solutions as we need to.

Now, solutions that start “near” P=0 all move away from the solution as t increases. Note that moving away does not necessarily mean that they grow without bound as they move away. It only means that they move away. Solutions that start out greater than P=0 move away but do stay bounded as t grows. In fact, they move in towards P=10.
Equilibrium solutions in which solutions that start “near” them move away from the equilibrium solution are called unstable equilibrium points or unstable equilibrium solutions. So, for our logistics equation, P=0 is an unstable equilibrium solution.
Next, solutions that start “near” P=10 all move in toward P=10 as t increases. Equilibrium solutions in which solutions that start “near” them move toward the equilibrium solution are called asymptotically stable equilibrium points or asymptotically stable equilibrium solutions. So, P=10 is an asymptotically stable equilibrium solution.

There is one more classification, but I’ll wait until we get an example in which this occurs to introduce it. So, let’s take a look at a couple of examples.


Example 1 Find and classify all the equilibrium solutions to the following differential equation.
y=y2y6

First, find the equilibrium solutions. This is generally easy enough to do.
y2y6=(y3)(y+2)=0So, it looks like we’ve got two equilibrium solutions. Both y=2 and y=3 are equilibrium solutions. Below is the sketch of some integral curves for this differential equation. A sketch of the integral curves or direction fields can simplify the process of classifying the equilibrium solutions.
From this sketch it appears that solutions that start “near” y=2 all move towards it as t increases and so y=2 is an asymptotically stable equilibrium solution and solutions that start “near” y=3 all move away from it as t increases and so y=3is an unstable equilibrium solution.
This next example will introduce the third classification that we can give to equilibrium solutions.



Example 2 Find and classify the equilibrium solutions of the following differential equation.
y=(y24)(y+1)2


The equilibrium solutions are to this differential equation are y=2y=2, and y=1. Below is the sketch of the integral curves.
From this it is clear (hopefully) that y=2 is an unstable equilibrium solution and y=2 is an asymptotically stable equilibrium solution. However, y=1 behaves differently from either of these two. Solutions that start above it move towards y=1 while solutions that start below y=1 move away as t increases.
In cases where solutions on one side of an equilibrium solution move towards the equilibrium solution and on the other side of the equilibrium solution move away from it we call the equilibrium solution semi-stable.
So, y=1 is a semi-stable equilibrium solution.

Comments

Popular posts from this blog

Digital Signal Processing - Basic Continuous Time Signals

To test a system, generally, standard or basic signals are used. These signals are the basic building blocks for many complex signals. Hence, they play a very important role in the study of signals and systems. Unit Impulse or Delta Function A signal, which satisfies the condition,   δ ( t ) = lim ϵ → ∞ x ( t ) δ ( t ) = lim ϵ → ∞ x ( t )   is known as unit impulse signal. This signal tends to infinity when t = 0 and tends to zero when t ≠ 0 such that the area under its curve is always equals to one. The delta function has zero amplitude everywhere except at t = 0. Properties of Unit Impulse Signal δ(t) is an even signal. δ(t) is an example of neither energy nor power (NENP) signal. Area of unit impulse signal can be written as; A = ∫ ∞ − ∞ δ ( t ) d t = ∫ ∞ − ∞ lim ϵ → 0 x ( t ) d t = lim ϵ → 0 ∫ ∞ − ∞ [ x ( t ) d t ] = 1 Weight or strength of the signal can be written as; y ( t ) = A δ ( t ) y ( t ) = A δ ( t ) Area of the weighted impulse s...

Differential Equations - First Order: Bernoulli

In this section we are going to take a look at differential equations in the form, y ′ + p ( x ) y = q ( x ) y n y ′ + p ( x ) y = q ( x ) y n where  p ( x ) p ( x )  and  q ( x ) q ( x )  are continuous functions on the interval we’re working on and  n n  is a real number. Differential equations in this form are called  Bernoulli Equations . First notice that if  n = 0 n = 0  or  n = 1 n = 1  then the equation is linear and we already know how to solve it in these cases. Therefore, in this section we’re going to be looking at solutions for values of  n n  other than these two. In order to solve these we’ll first divide the differential equation by  y n y n  to get, y − n y ′ + p ( x ) y 1 − n = q ( x ) y − n y ′ + p ( x ) y 1 − n = q ( x ) We are now going to use the substitution  v = y 1 − n v = y 1 − n  to convert this into a differential equation in terms of  v v . As we’ll see th...

Differential Equations - Systems: Solutions

Now that we’ve got some of the basics out of the way for systems of differential equations it’s time to start thinking about how to solve a system of differential equations. We will start with the homogeneous system written in matrix form, → x ′ = A → x (1) (1) x → ′ = A x → where,  A A  is an  n × n n × n  matrix and  → x x →  is a vector whose components are the unknown functions in the system. Now, if we start with  n = 1 n = 1 then the system reduces to a fairly simple linear (or separable) first order differential equation. x ′ = a x x ′ = a x and this has the following solution, x ( t ) = c e a t x ( t ) = c e a t So, let’s use this as a guide and for a general  n n  let’s see if → x ( t ) = → η e r t (2) (2) x → ( t ) = η → e r t will be a solution. Note that the only real difference here is that we let the constant in front of the exponential be a vector. All we need to do then is plug this into the d...

Calculus III - 3-Dimensional Space: Equations of Lines

In this section we need to take a look at the equation of a line in  R 3 R 3 . As we saw in the previous section the equation  y = m x + b y = m x + b  does not describe a line in  R 3 R 3 , instead it describes a plane. This doesn’t mean however that we can’t write down an equation for a line in 3-D space. We’re just going to need a new way of writing down the equation of a curve. So, before we get into the equations of lines we first need to briefly look at vector functions. We’re going to take a more in depth look at vector functions later. At this point all that we need to worry about is notational issues and how they can be used to give the equation of a curve. The best way to get an idea of what a vector function is and what its graph looks like is to look at an example. So, consider the following vector function. → r ( t ) = ⟨ t , 1 ⟩ r → ( t ) = ⟨ t , 1 ⟩ A vector function is a function that takes one or more variables, one in this case, and returns a...

Differential Equations - First Order: Modeling - i

We now move into one of the main applications of differential equations both in this class and in general. Modeling is the process of writing a differential equation to describe a physical situation. Almost all of the differential equations that you will use in your job (for the engineers out there in the audience) are there because somebody, at some time, modeled a situation to come up with the differential equation that you are using. This section is not intended to completely teach you how to go about modeling all physical situations. A whole course could be devoted to the subject of modeling and still not cover everything! This section is designed to introduce you to the process of modeling and show you what is involved in modeling. We will look at three different situations in this section : Mixing Problems, Population Problems, and Falling Objects. In all of these situations we will be forced to make assumptions that do not accurately depict reality in most cases, but wi...

Digital Signal Processing - Miscellaneous Signals

There are other signals, which are a result of operation performed on them. Some common type of signals are discussed below. Conjugate Signals Signals, which satisfies the condition  x ( t ) = x ∗ ( − t ) are called conjugate signals. Let  x ( t ) = a ( t ) + j b ( t ) So,  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) By Condition,  x ( t ) = x ∗ ( − t ) If we compare both the derived equations 1 and 2, we can see that the real part is even, whereas the imaginary part is odd. This is the condition for a signal to be a conjugate type. Conjugate Anti-Symmetric Signals Signals, which satisfy the condition  x ( t ) = − x ∗ ( − t ) are called conjugate anti-symmetric signal Let  x ( t ) = a ( t ) + j b ( t ) So  x ( − t ) = a ( − t ) + j b ( − t ) And  x ∗ ( − t ) = a ( − t ) − j b ( − t ) − x ∗ ( − t ) = − a ( − t ) + j b ( − t ) By Condition  x ( t ) = − x ∗ ( − t ) ...

Differential Equations - Systems: Repeated Eigenvalues - i

This is the final case that we need to take a look at. In this section we are going to look at solutions to the system, → x ′ = A → x x → ′ = A x → where the eigenvalues are repeated eigenvalues. Since we are going to be working with systems in which  A A  is a  2 × 2 2 × 2  matrix we will make that assumption from the start. So, the system will have a double eigenvalue,  λ λ . This presents us with a problem. We want two linearly independent solutions so that we can form a general solution. However, with a double eigenvalue we will have only one, → x 1 = → η e λ t x → 1 = η → e λ t So, we need to come up with a second solution. Recall that when we looked at the double root case with the second order differential equations we ran into a similar problem. In that section we simply added a  t t  to the solution and were able to get a second solution. Let’s see if the same thing will work in this case as well. We’ll see if → x = t e...

Differential Equations - Systems: Repeated Eigenvalues - ii

Example 3  Solve the following IVP. → x ′ = ( − 1 3 2 − 1 6 − 2 ) → x → x ( 2 ) = ( 1 0 ) x → ′ = ( − 1 3 2 − 1 6 − 2 ) x → x → ( 2 ) = ( 1 0 ) First the eigenvalue for the system. det ( A − λ I ) = ∣ ∣ ∣ ∣ − 1 − λ 3 2 − 1 6 − 2 − λ ∣ ∣ ∣ ∣ = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 det ( A − λ I ) = | − 1 − λ 3 2 − 1 6 − 2 − λ | = λ 2 + 3 λ + 9 4 = ( λ + 3 2 ) 2 ⇒ λ 1 , 2 = − 3 2 Now let’s get the eigenvector. ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( η 1 η 2 ) = ( 0 0 ) ⇒ 1 2 η 1 + 3 2 η 2 = 0 η 1 = − 3 η 2 → η = ( − 3 η 2 η 2 ) η 2 ≠ 0 → η ( 1 ) = ( − 3 1 ) η 2 = 1 η → = ( − 3 η 2 η 2 ) η 2 ≠ 0 η → ( 1 ) = ( − 3 1 ) η 2 = 1 Now find  → ρ ρ → , ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 ( 1 2 3 2 − 1 6 − 1 2 ) ( ρ 1 ρ 2 ) = ( − 3 1 ) ⇒ 1 2 ρ 1 + 3 2 ρ 2 = − 3 ρ 1 = − 6 − 3 ρ 2 → ρ = ( − 6 − 3 ρ 2 ρ 2 ) ⇒ → ρ = ( − 6 0 ) if  ρ 2 = 0 ρ → ...

Differential Equations - Laplace Transforms: Table

f ( t ) = L − 1 { F ( s ) } f ( t ) = L − 1 { F ( s ) } F ( s ) = L { f ( t ) } F ( s ) = L { f ( t ) }  1 1 s 1 s e a t e a t 1 s − a 1 s − a t n , n = 1 , 2 , 3 , … t n , n = 1 , 2 , 3 , … n ! s n + 1 n ! s n + 1 t p t p ,  p > − 1 p > − 1 Γ ( p + 1 ) s p + 1 Γ ( p + 1 ) s p + 1 √ t t √ π 2 s 3 2 π 2 s 3 2 t n − 1 2 , n = 1 , 2 , 3 , … t n − 1 2 , n = 1 , 2 , 3 , … 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) √ π 2 n s n + 1 2 1 ⋅ 3 ⋅ 5 ⋯ ( 2 n − 1 ) π 2 n s n + 1 2 sin ( a t ) sin ⁡ ( a t ) a s 2 + a 2 a s 2 + a 2 cos ( a t ) cos ⁡ ( a t ) s s 2 + a 2 s s 2 + a 2 t sin ( a t ) t sin ⁡ ( a t ) 2 a s ( s 2 + a 2 ) 2 2 a s ( s 2 + a 2 ) 2 t cos ( a t ) t cos ⁡ ( a t ) s 2 − a 2 ( s 2 + a 2 ) 2 s 2 − a 2 ( s 2 + a 2 ) 2 sin ( a t ) − a t cos ( a t ) sin ⁡ ( a t ) − a t cos ⁡ ( a t ) 2 a 3 ( s 2 + a 2 ) 2 2 a 3 ( s 2 + a 2 ) 2 sin ( a t ) + a t cos ( a t ) sin ⁡ ( a t ) + a t cos ⁡ ( a t ) 2 a s 2 ( s 2 + a 2 ) 2 2 a s 2 ( s 2 + a 2 ) 2 cos ( a t ) − a t sin ( a t ) cos ⁡ (...

Differential Equations - Basic Concepts: Definitions

Differential Equation The first definition that we should cover should be that of  differential equation . A differential equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives. There is one differential equation that everybody probably knows, that is Newton’s Second Law of Motion. If an object of mass  m m  is moving with acceleration  a a  and being acted on with force  F F  then Newton’s Second Law tells us. F = m a (1) (1) F = m a To see that this is in fact a differential equation we need to rewrite it a little. First, remember that we can rewrite the acceleration,  a a , in one of two ways. a = d v d t OR a = d 2 u d t 2 (2) (2) a = d v d t OR a = d 2 u d t 2 Where  v v  is the velocity of the object and  u u  is the position function of the object at any time  t t . We should also remember at this point that the force,  F F  may also be a f...